Блок питания уходит в защиту под нагрузкой: Бп при нагрузке уходит в защиту

Содержание

Почему срабатывает защита блока питания?

Теоретически, работа датчиков то­ко­вой за­щи­ты бло­ка пи­та­ния мог­ла бы со­сто­ять в из­ме­ре­нии па­де­ния на­пря­же­ния на ре­зис­то­рах, вклю­чен­ных по­сле­до­ва­тель­но с на­груз­кой. Та­кой пря­мо­ли­ней­ный под­ход в про­ек­ти­ро­ва­нии це­пей, спо­соб­ных обес­пе­чи­вать то­ки в де­сят­ки ам­пер, при­вел бы к боль­шим по­те­рям. Оче­вид­ный трюк, уже мно­го лет ис­поль­зуме­мый раз­ра­бот­чи­ка­ми им­пуль­с­ных бло­ков пи­та­ния для пер­со­наль­ных ком­пью­те­ров, — за­ме­рять па­­де­­ние на­пря­же­ния на ин­дук­тив­но­стях в це­пи LC-филь­тра вы­ход­ных напряжений +12V, +5V, +3.3V.

Давайте рассмотрим, как ре­а­ли­зо­ва­на защита блока питания от пре­вы­ше­ния по­тре­б­ля­е­мо­го тока на при­ме­ре ис­поль­зо­ва­ния одного из лучших уп­рав­ля­ю­щих кон­т­рол­ле­ров WT7527 от Weltrend Se­mi­con­duc­tor. Этот чип с успехом при­ме­ня­ет­ся в серии Prime блоков питания Seasonic, поль­зу­ю­щих­ся за­слу­жен­ным ува­же­ни­ем самых взы­с­ка­тель­ных поль­зо­ва­те­лей.


Рис 1. Фрагмент принципиальной схемы подключения управляющего контроллера Weltrend Semiconductor WT7527

 

Как следует из заводской документации, контроллер WT7527 обеспечивает четыре линии токовой защиты: две для линий +12V, и по одной для +3.3V и +5V. В связи с тем, что основной отбор мощности современные сис­тем­ные платы и вы­со­ко­у­ров­не­вые ви­део адап­теры вы­пол­ня­ет по двенадцативольтовой шине, ос­та­но­вим­ся на тонкостях ре­а­ли­за­ции OCP (Over Current Protection) именно для нее.

Ограничения по току

Если вы думаете, что в цепях питания персонального компьютера возможен любой произвол, с этой мыслью мож­но рас­про­щать­ся. Международный стандарт IEC 60950-1, логотип которого вынесен в заголовок статьи, де­кла­ри­ру­ет пре­дел мощности — не более 240VA по каждой шине. Физический смысл такого ограничения — пред­от­вра­тить си­ту­а­цию, при которой аварийная мощность, потребляемая в случае короткого замыкания, мо­жет быть вос­при­ня­та схе­мой то­ко­вой защиты как допустимая (потребляемая нагрузкой), что может при­вес­ти к раз­ру­ше­нию эле­мен­тов уст­ройства и да­же возгоранию.

В случае с постоянным током можно говорить о 240 Ваттах, что устанавливает для 12-вольтовой линии лимит в 20 А. Обойти это ограничение очень просто: достаточно развести напряжения по разным шинам, как это де­ла­ет, на­при­мер, Chieftec в блоках питания APS-500C:

 

Как следует из информации на самом блоке питания по каждой их линий +12V1 и +12V2 подается ток 18А. Обыч­но, од­на из них делегируется для питания процессора, другая используется для накопителей и со­пут­ству­ю­щей пе­ри­фе­рии. Каждая из них обслуживается своей схемой токовой защиты: и овцы целы требования IEC 60950-1 со­блю­де­ны, и пи­та­ние в норме.

 

В 700-ваттнике от FSP Group также востребован экстенсивный метод: 12-вольтовые линии разнесены на че­ты­ре ка­на­ла, каждый из которых ограничен 18-амперным по­треб­ле­ни­ем тока. При этом общая мощность че­ты­рех­ка­наль­но­го ре­гу­ля­то­ра ог­ра­ни­че­на величиной 680 Ватт, что формально оз­на­ча­ет — суммарный ток че­ты­рех 12-вольтовых ка­на­лов не должен пре­вы­шать лимит в 56.6 Ампер. (680W/12V=56.6A). Вни­ма­тель­ный чи­та­тель заметит, что со­глас­но до­пол­ни­тель­но­му ком­мен­та­рию на этикетке имеют место более строгие ог­ра­ни­че­ния: суммарный ток по линиям +12V не должен превышать 50A, а общий вы­ход­ной ток ог­ра­ни­чен ли­ми­том в 70 Ампер. Очевидно, что умножение 18A на че­ты­ре канала не дает сколько-нибудь по­лез­ной ин­фор­ма­ции.

Современные тенденции в архитектуре блоков питания

Разделение нагрузки на примерно равные части яв­ля­ет­ся не более, чем трюком, ко­то­рым удачно вос­поль­зо­ва­лись раз­­ра­­бот­­чи­­ки — питание неделимой нагрузки, по­треб­ля­ю­щей более 20 ампер по линии +12 вольт не­воз­мож­но без на­ру­ше­ния норм без­о­пас­нос­ти. Очевидно, соблюдение этих норм зависит не только от раз­де­ле­ния каналов в бло­ке пи­та­ния, но и раз­вод­ки силовых цепей в нагрузке.

Если мощный потребитель (например, видео адаптер), к которому подключено более одного разъема до­пол­ни­тель­но­го питания, соединяет их 12-вольтовые цепи в одну точку, либо соединяет 12-вольтовые линии разъ­ема PCI Express и дополнительного питания, то результатом будет не только нарушение спецификации, но и риск создания дисбаланса в таких принудительно коммутируемых каналах.

Это значит, что грамотная сборка высокоуровневых платформ и май­нин­го­вых ферм невозможна без верификации системы с помощью ом­мет­ра. Или, перефразируя известного ав­то­ра, «воз­мож­на, если вам не важен результат».

Если требуется питать неразделимую нагрузку большим током, со­е­ди­не­ние линий из недостатка пре­вра­ща­ет­ся в пре­и­му­ще­ст­во — при раз­де­льных каналах встре­ча­ют­ся варианты, когда ток, обеспечиваемый бло­ком пи­та­ния по ли­нии до­пол­ни­тель­но­го питания видео карты, не­до­ста­то­чен, хотя он и меньше сум­мар­ного тока всех ка­на­лов. При одной 100A линии по­тре­би­тель за­стра­хо­ван от данного типа не­сов­мес­ти­мос­ти.

Дополнительные минусы единого канала также существуют, ведь потребляемый от линии питания ток яв­ля­ет­ся фун­к­ци­ей времени. Например, для жест­ко­го диска уровень по­тре­б­ле­ния уве­ли­чи­ва­ет­ся при по­зи­ци­о­ни­ро­ва­нии, для CPU и GPU из­ме­не­н­ия могут быть обусловлены ци­кли­че­ским вы­пол­не­ни­ем фраг­мен­тов кода, со­зда­ю­ще­го раз­лич­ную вы­чис­ли­тель­ную нагрузку. В результате вза­и­мо­вли­я­ния компонентов и вслед­ст­вие уве­ли­че­ния по­треб­ле­ния то­ка мо­жет воз­рас­ти уровень помех по ли­ни­ям питания. Выведя ре­гу­ля­тор гром­кос­ти на пол­ную мощ­ность и за­пус­тив майнинг, не услы­шим ли мы в динамиках «звон бит­ко­и­нов»?

Импульсный блок питания уходит в защиту

В этой статье, я немного расскажу об основах ремонта компьютерных, импульсных блоков питания стандарта ATX. Это одна из первых моих статей, я написал её примерно 5 лет назад, по этому прошу строго не судить.

Меры предосторожности.
Ремонт импульсных БП, довольно опасное занятие, особенно если неисправность касается горячей части БП. Поэтому делаем всё вдумчиво и аккуратно, без спешки, с соблюдением техники безопасности.

Силовые конденсаторы могут длительное время держать заряд, поэтому не стоит прикасаться к ним голыми руками сразу после отключения питания. Ни в коем случае не стоит прикасаться к плате или радиаторам при подключенном к сети блоке питания.

Для того чтобы избежать фейерверка и сохранить ещё живые элементы следует впаять 100 ватную лампочку вместо предохранителя. Если при включении БП в сеть лампа вспыхивает и гаснет – все нормально, а если при включении лампа зажигается и не гаснет – где-то короткое замыкание.

Проверять блок питания после выполненного ремонта следует вдали от легко воспламеняющихся материалов.

Паяльник, припой, флюс. Рекомендуется паяльная станция с регулировкой мощности или пара паяльников разной мощности. Мощный паяльник понадобиться для выпаивания транзисторов и диодных сборок, которые находятся на радиаторах, а так же трансформаторов и дросселей. Паяльником меньшей мощности паяется разная мелочевка.

Отсос для припоя и (или) оплетка. Служат для удаления припоя.
Отвертка
Бокорезы. Используются для удаления пластиковых хомутов, которыми стянуты провода.
Мультиметр
Пинцет
Лампочка на 100Вт
Очищенный бензин или спирт. Используется для очистки платы от следов пайки.
Устройство БП.

Немного о том, что мы увидим, вскрыв блок питания.

Внутреннее изображение блока питания системы ATX

A – диодный мост, служит для преобразования переменного тока в постоянный

B – силовые конденсаторы, служат для сглаживания входного напряжения

Между B и C – радиатор, на котором расположены силовые ключи

C – импульсный трансформатор, служит для формирования необходимых номиналов напряжения, а также для гальванической развязки

между C и D – радиатор, на котором размещены выпрямительные диоды выходных напряжений

D – дроссель групповой стабилизации (ДГС), служит для сглаживания помех на выходе

E – выходные, фильтрующие, конденсаторы, служат для сглаживания помех на выходе

Распиновка разъема 24 pin и измерение напряжений.

Знание контактов на разъеме ATX нам понадобится для диагностики БП. Прежде чем приступать к ремонту следует проверить напряжение дежурного питания, на рисунке этот контакт отмечен синим цветом +5V SB, обычно это фиолетовый провод. Если дежурка в порядке, то следует проверить наличие сигнала POWER GOOD (+5V), на рисунке этот контакт помечен серым цветом, PW-OK. Power good появляется только после включения БП. Для запуска БП замыкаем зеленый и черный провод, как на картинке. Если PG присутствует, то, скорее всего блок питания уже запустился и следует проверить остальные напряжения. Обратите внимание, что выходные напряжения будут отличаться в зависимости от нагрузки. Так, что если увидите на желтом проводе 13 вольт, не стоит беспокоиться, вполне вероятно, что под нагрузкой они стабилизируются до штатных 12 вольт.

Если у вас проблема в горячей части и требуется измерить там напряжения, то все измерения надо проводить от общей земли, это минус диодного моста или силовых конденсаторов.

Первое, что следует сделать, вскрыть блок питания и произвести визуальный осмотр.

Если БП пыльный вычищаем его. Проверяем, крутится ли вентилятор, если он стоит, то это, скорее всего и является причиной выхода из строя БП. В таком случае следует смотреть на диодные сборки и ДГС. Они наиболее склонны к выходу из строя из- за перегрева.

Далее осматриваем БП на предмет сгоревших элементов, потемневшего от температуры текстолита, вспученных конденсаторов, обугленной изоляции ДГС, оборванных дорожек и проводов.

Перед вскрытием блока питания можно попробовать включить БП, чтобы наверняка определиться с диагнозом. Правильно поставленный диагноз – половина лечения.

БП не запускается, отсутствует напряжение дежурного питания
БП не запускается, но дежурное напряжение присутствует. Нет сигнала PG.
БП уходит в защиту,
БП работает, но воняет.
Завышены или занижены выходные напряжения
Предохранитель.

В этой статье, я немного расскажу об основах ремонта компьютерных, импульсных блоков питания стандарта ATX. Это одна из первых моих статей, я написал её примерно 5 лет назад, по этому прошу строго не судить.

Меры предосторожности.
Ремонт импульсных БП, довольно опасное занятие, особенно если неисправность касается горячей части БП. Поэтому делаем всё вдумчиво и аккуратно, без спешки, с соблюдением техники безопасности.

Силовые конденсаторы могут длительное время держать заряд, поэтому не стоит прикасаться к ним голыми руками сразу после отключения питания. Ни в коем случае не стоит прикасаться к плате или радиаторам при подключенном к сети блоке питания.

Для того чтобы избежать фейерверка и сохранить ещё живые элементы следует впаять 100 ватную лампочку вместо предохранителя. Если при включении БП в сеть лампа вспыхивает и гаснет – все нормально, а если при включении лампа зажигается и не гаснет – где-то короткое замыкание.

Проверять блок питания после выполненного ремонта следует вдали от легко воспламеняющихся материалов.

Паяльник, припой, флюс. Рекомендуется паяльная станция с регулировкой мощности или пара паяльников разной мощности. Мощный паяльник понадобиться для выпаивания транзисторов и диодных сборок, которые находятся на радиаторах, а так же трансформаторов и дросселей. Паяльником меньшей мощности паяется разная мелочевка.
Отсос для припоя и (или) оплетка. Служат для удаления припоя.
Отвертка
Бокорезы. Используются для удаления пластиковых хомутов, которыми стянуты провода.
Мультиметр
Пинцет
Лампочка на 100Вт
Очищенный бензин или спирт. Используется для очистки платы от следов пайки.
Устройство БП.

Немного о том, что мы увидим, вскрыв блок питания.

Внутреннее изображение блока питания системы ATX

A – диодный мост, служит для преобразования переменного тока в постоянный

B – силовые конденсаторы, служат для сглаживания входного напряжения

Между B и C – радиатор, на котором расположены силовые ключи

C – импульсный трансформатор, служит для формирования необходимых номиналов напряжения, а также для гальванической развязки

между C и D – радиатор, на котором размещены выпрямительные диоды выходных напряжений

D – дроссель групповой стабилизации (ДГС), служит для сглаживания помех на выходе

E – выходные, фильтрующие, конденсаторы, служат для сглаживания помех на выходе

Распиновка разъема 24 pin и измерение напряжений.

Знание контактов на разъеме ATX нам понадобится для диагностики БП. Прежде чем приступать к ремонту следует проверить напряжение дежурного питания, на рисунке этот контакт отмечен синим цветом +5V SB, обычно это фиолетовый провод. Если дежурка в порядке, то следует проверить наличие сигнала POWER GOOD (+5V), на рисунке этот контакт помечен серым цветом, PW-OK. Power good появляется только после включения БП. Для запуска БП замыкаем зеленый и черный провод, как на картинке. Если PG присутствует, то, скорее всего блок питания уже запустился и следует проверить остальные напряжения. Обратите внимание, что выходные напряжения будут отличаться в зависимости от нагрузки. Так, что если увидите на желтом проводе 13 вольт, не стоит беспокоиться, вполне вероятно, что под нагрузкой они стабилизируются до штатных 12 вольт.

Если у вас проблема в горячей части и требуется измерить там напряжения, то все измерения надо проводить от общей земли, это минус диодного моста или силовых конденсаторов.

Первое, что следует сделать, вскрыть блок питания и произвести визуальный осмотр.

Если БП пыльный вычищаем его. Проверяем, крутится ли вентилятор, если он стоит, то это, скорее всего и является причиной выхода из строя БП. В таком случае следует смотреть на диодные сборки и ДГС. Они наиболее склонны к выходу из строя из- за перегрева.

Далее осматриваем БП на предмет сгоревших элементов, потемневшего от температуры текстолита, вспученных конденсаторов, обугленной изоляции ДГС, оборванных дорожек и проводов.

Перед вскрытием блока питания можно попробовать включить БП, чтобы наверняка определиться с диагнозом. Правильно поставленный диагноз – половина лечения.

БП не запускается, отсутствует напряжение дежурного питания
БП не запускается, но дежурное напряжение присутствует. Нет сигнала PG.
БП уходит в защиту,
БП работает, но воняет.
Завышены или занижены выходные напряжения
Предохранитель.

Теоретически, работа датчиков токовой защиты блока питания могла бы со­сто­ять в измерении падения напряжения на ре­зис­то­рах, включенных по­сле­до­ва­тель­но с на­груз­кой. Та­кой пря­мо­ли­ней­ный под­ход в про­ек­ти­ро­ва­нии це­пей, спо­соб­ных обес­пе­чи­вать то­ки в де­сят­ки ам­пер, при­вел бы к боль­шим по­те­рям. Оче­вид­ный трюк, уже мно­го лет ис­поль­зуме­мый раз­ра­бот­чи­ка­ми им­пуль­с­ных бло­ков пи­та­ния для пер­со­наль­ных ком­пью­те­ров, — за­ме­рять па­­де­­ние на­пря­же­ния на ин­дук­тив­но­стях в це­пи LC-филь­тра вы­ход­ных напряжений +12V, +5V, +3.3V.

Давайте рассмотрим, как реализована защита блока питания от превышения потребляемого тока на примере ис­поль­зо­ва­ния одного из лучших управляющих контроллеров WT7527 от Weltrend Semiconuctor. Этот чип с успехом применяется в серии Prime блоков питания Seasonic, пользующихся заслуженным уважением самых взы­с­ка­тель­ных пользователей.


Рис 1. Фрагмент принципиальной схемы подключения управляющего контроллера Weltrend Semiconuctor WT7527

Как следует из заводской документации, контроллер WT7527 обеспечивает четыре линии токовой защиты: две для линий +12V, и по одной для +3.3V и +5V. В связи с тем, что основной отбор мощности современные системные платы и вы­со­ко­у­ров­не­вые ви­део адап­теры вы­пол­ня­ет по двенадцативольтовой шине, остановимся на тонкостях ре­а­ли­за­ции OCP (Over Current Protection) именно для нее.

Ограничения по току

Если вы думаете, что в цепях питания персонального компьютера возможен любой произвол, с этой мыслью мож­но рас­про­щать­ся. Международный стандарт IEC 60950-1, логотип которого вынесен в заголовок статьи, де­кла­ри­ру­ет предел мощности — не более 240VA по каждой шине. Физический смысл такого ограничения — пред­от­вра­тить си­ту­а­цию, при которой аварийная мощность, потребляемая в случае короткого замыкания, может быть вос­при­ня­та схе­мой то­ко­вой защиты как допустимая (потребляемая нагрузкой), что может при­вес­ти к раз­ру­ше­нию эле­мен­тов уст­ройства и да­же возгоранию.

В случае с постоянным током можно говорить о 240 Ваттах, что устанавливает для 12-вольтовой линии лимит в 20 А. Обойти это ограничение очень просто: достаточно развести напряжения по разным шинам, как это де­ла­ет, на­при­мер, Chieftec в блоках питания APS-500C:

Как следует из информации на самом блоке питания по каждой их линий +12V1 и +12V2 подается ток 18А. Обыч­но, од­на из них делегируется для питания процессора, другая используется для накопителей и со­пут­ству­ю­щей пе­ри­фе­рии. Каждая из них обслуживается своей схемой токовой защиты: и овцы целы требования IEC 60950-1 со­блю­де­ны, и пи­та­ние в норме.

В 700-ваттнике от FSP Group также востребован экстенсивный метод: 12-вольтовые линии разнесены на че­ты­ре ка­на­ла, каждый из которых ограничен 18-амперным потреблением тока. При этом общая мощность че­ты­рех­ка­наль­но­го регулятора ограничена величиной 680 Ватт, что формально оз­на­ча­ет — суммарный ток че­ты­рех 12-вольтовых ка­на­лов не должен превышать лимит в 56.6 Ампер. (680W/12V=56.6A). Вни­ма­тель­ный читатель заметит, что согласно дополнительному комментарию на этикетке имеют место более строгие ог­ра­ни­че­ния: суммарный ток по линиям +12V не должен превышать 50 Ампер, а общий выходной ток ог­ра­ни­чен лимитом в 70 Ампер. Очевидно, что умножение 18 ампер на четыре канала не дает сколько-нибудь по­лез­ной информации.

Современные тенденции в архитектуре блоков питания

Разделение нагрузки на примерно равные части является не более, чем трюком, ко­то­рым удачно вос­поль­зо­ва­лись раз­ра­бот­чи­ки — питание неделимой нагрузки, потребляющей более 20 ампер по линии +12 вольт невозможно без нарушения норм безопасности. Очевидно, соблюдение этих норм зависит не только от раз­де­ле­ния каналов в бло­ке питания, но и разводки силовых цепей в нагрузке.

Если мощный потребитель (например, видео адаптер), к которому подключено более одного разъема до­пол­ни­тель­но­го питания, соединяет их 12-вольтовые цепи в одну точку, либо соединяет 12-вольтовые линии разъема PCI Express и дополнительного питания, то результатом будет не только нарушение спецификации, но и риск создания дисбаланса в таких принудительно коммутируемых каналах. Это значит, что грамотная сборка высокоуровневых платформ и май­нин­го­вых ферм невозможна без верификации системы с помощью омметра. Или, перефразируя известного ав­то­ра, «воз­мож­на, если вам не важен результат».

Если требуется питать неразделимую нагрузку большим током, соединение линий из недостатка пре­вра­ща­ет­ся в пре­и­му­ще­ст­во — при раздельных каналах встречаются варианты, когда ток, обеспечиваемый блоком пи­та­ния по ли­нии дополнительного питания видео карты, недостаточен, хотя он и меньше суммарного тока всех ка­на­лов. При одной 100-амперной линии потребитель застрахован от данного типа несовместимости.

Дополнительные минусы единого канала также существуют, ведь потребляемый от линии питания ток яв­ля­ет­ся фун­к­ци­ей времени. Например, для жесткого диска уровень потребления увеличивается при выполнении по­зи­ци­о­ни­ро­ва­ния, для CPU и GPU изменения могут быть обусловлены циклическим выполнением фраг­мен­тов кода, со­зда­ю­ще­го раз­лич­ную вычислительную нагрузку. В результате взаимовлияния компонентов и вслед­ст­вие уве­ли­че­ния по­треб­ле­ния то­ка может возрасти уровень помех по ли­ни­ям питания. Выведя ре­гу­ля­тор громкости на пол­ную мощ­ность и за­пус­тив майнинг, не услы­шим ли мы в динамиках «звон бит­ко­и­нов»?

Диагностика, ремонт и доработка компьютерного блока питания АТХ — Starus Recovery

В этой статье мы рассмотрим устройство простого блока питания АТХ для ПК. Расскажем какие компоненты обычно отсутствуют в дешевом китайском блоке, на которых сэкономил производитель. Рассмотрим вопрос надежности и частую причину повреждения таких блоков питания. А также расскажем как правильно диагностировать неисправность, замерять напряжение под нагрузкой и без.


Содержание статьи:


 

Для примера возьмем блок питания Oktet модель ATX-400W
  • Мощность — 400 Вт
  • Форм-фактор — ATX
  • КПД — 70%
  • Охлаждение — кулер 80 мм
  • PFC модуль — активный
  • Стабилизация напряжения — нет
  • Защита от перегрузки — нет
  • Защита от короткого замыкания — есть

Основная причина повреждения и правильный расчет мощности БП АТХ

Наш блок питания из за неправильного расчета мощности пережил короткое замыкание в нагрузке. Изоляция проводов для подключения внешней нагрузки сильно оплавилась, некоторые провода сгорели полностью.

А почему это случилось?
Причина следующая: заявленная мощность блока 400вт, но это не совсем так — это общая мощность, а на самом деле, в таком дешевом Блоке питания, в лучшем случае будет ватт 250.

Основная потребляемая мощность в современной сборке приходится на линию 12в. От этой линии в компьютере питается практически все! И если рассмотреть линию 12в/15А данного блока и пересчитать ее в ваты то получаем честные 180 вт (12в*15А = 180 ватт)

Вывод:
Надо внимательно изучать информационную наклейку на БП и понимать какую мощность отдает устройство именно по линии 12в.

Ниже пример правильного блока питания на 400вт с правильным указанием мощности. Здесь сразу понятно какую реальную мощность вы можете получить по линии 12 вольт — это честные 275 ватт.

Наш БП все же выдает все напряжения (12, 5, 3.3 вольта) и можно уверенно сказать, что такие блоки довольно живучие, но далеко не надежные! Поскольку такое устройство не имеет Стабилизации напряжения и Защиты от перегрузки. А так же зачастую в таких блоках присутствуют не все компоненты на платах. И такое устройство может легко уничтожить вашу материнскую плату или процессор.

Как проверить выдаваемые блоком напряжения

Чтобы проверить выдаваемые блоком напряжения можно воспользоваться готовыми изделиями с китай-рынка — например цифровым тестером для блоков питания АТХ.

Также снять показания можно обычным вольтметром. Но сначала вам потребуется запустить блок, а для этого необходимо найти контакт дежурного напряжения — так называемый Standby контакт. Находится он на главном разъеме для подключения материнской платы, цвет подводящего провода зеленый.

Чтобы запустить — нужно замкнуть этот контакт с черным проводом (массой). Сделать это можно обычной скрепкой или пинцетом. Напряжения на разъемах для питания внешних устройств появятся только после запуска блока, об этом вы поймете по вращению кулера охлаждения.

После запуска, снимаем показания напряжения по всем линиям питания. Если все напряжения соответствуют, можно подключить эквивалент нагрузки. В роли нагрузки можно использовать лампу 12в мощностью приблизительно 100 вт.

Но правильнее будет сначала разобрать блок питания и визуально оценить состояние компонентов, а потом подключить эквивалент нагрузки. Надо убедиться что на плате нет подгоревших дросселей, а высоковольтные конденсаторы не по вздувались.

Откручиваем 4 винтика, снимаем верхнюю крышку, аккуратно извлекаем плату и осматриваем. В нашем блоке визуально поврежденных компонентов не видно, конденсаторы целые, плата чистая.

Устройство простых блоков питания АТХ

Данный Блок питания выполнен по стандартной схемотехнике для блоков ATX. Входное напряжение 220в поступает через сетевой разъем на плату, на которой отсутствует сетевой фильтр входного напряжения. Но место под распайку имеется — скорее всего это результат экономии наших китайских друзей.

Далее напряжение поступает на выпрямительный мост, рядом два накопительных конденсатора емкостью по 470 микрофарад — это минимальная емкость для данной мощности.

На первом радиаторе установлены два силовых ключа и транзистор мульти генератора дежурного напряжения. За ним развязывающий трансформатор и трансформатор дежурного напряжения.

На следующем радиаторе — это уже низковольтная часть БП, стоят диоды шотки, следом расположены дроссель групповой стабилизации +5 +12в и дроссель канала 3,3 вольта. На выходе жгуты линий напряжений для подключения внешних устройств и линия питания кулера.

Устранение неисправностей и доработка блока питания

Проверяем диоды выпрямительного моста на пробой — в нашем случае диоды оказались рабочими. Теперь надо заменить перегоревшие провода для питания внешних устройств. Жгут линий питания материнской платы не поврежден.

И так, мы заменили провода и немного доработали наш БП.
На выходе установили дополнительно конденсаторы по 1500 мкф 3шт, так как штатные по 1000мкф — маловато для этой мощности. А так же добавили дроссель и фильтрующие конденсаторы для входного напряжения сети 220в. Емкости высоковольтной части также пришлось заменить правильными по 560 мкф, поскольку измерение впаяных на плате — показало емкость всего 2 по 250 китайских мкф, вместо положенных 2 по 470 настоящих 🙂

Контрольное включение устройства после выполненных работ

Подаем входное напряжение 220в, проверяем наличие дежурного напряжения на разъеме под материнку, замыкаем этот контакт на массу и запускаем блок. Блок питания стартует, кулер вращается.

Проверяем напряжения по каждой линии питания 5/12/3,3 вольта

  • линия +5в — 5в ровно
  • линия +12в — 11,97
  • линия 3,3в -3,38в

Как правильно подключить лампу накаливания для тестирования под нагрузкой

Хотим обратить ваше внимание на некоторый нюанс подключения мощной лампы накаливания в качестве нагрузки.

Лампа накаливания нелинейный элемент, сопротивление ее меняется по мере разогрева нити накала. В холодном состоянии сопротивление очень низкое — 0,3 ом к примеру. Поэтому при подключении к цепи 12в в качестве нагрузки срабатывает защита по превышению тока.

А вот если предварительно разогреть нить накала пониженным напряжением, к примеру возьмем 5в, а после подключить на линию 12в — блок питания не уйдет в защиту. Потому что спираль уже нагрелась и сопротивление ее изменилось — увеличилось.

Давайте попробуем измерить сопротивление нити накала сразу после отключения — как видите — четыре с лишним ома! И далее при остывании лампы сопротивление опять снижается и при комнатной температуре оно опять будет порядка 0,2 ома.

При сопротивлении 0,2 Ома холодной лампы, импульс тока будет порядка 60А (закон Ома — I=V/Om), что превышает допустимый ток нагрузки для цепи 12в импульсного блока питания ATX. С разогретой лампой ток в цепи 12в будет всего порядка 2-5А.

И так пробуем подключить дополнительную нагрузку в виде лампы, БП не должен уходить в защиту. Сначала подключаем лампу на линию 5в — лампа должна загореться не очень ярко. Далее переключаем на 12в — свечение лампы становится более яркое.

Теперь надо снять показания напряжений на линиях в нагрузке.

  • линия 12в -просело до 11,72
  • линия 5в -4,98
  • линия 3в -3,31

Все показания в пределах допустимого.

Если устройство работает стабильно, можно собирать.
На жгут проводов не забываем одеть защитную клипсу, дабы избежать пробоя на корпус, в следствии повреждения изоляции проводов.

После блок питания надо окончательно протестировать, погоняв его некоторое время под нагрузкой по линии 12в. И теперь его можно использовать в какой нибудь нетребовательной сборке ПК!

 

На этом все, удачных ремонтов вам, живучей и надежной техники.

 


Похожие статьи про восстановление данных:


Дата:

Теги: Как исправить, Компьютер, Поврежденный, Ремонт

Блок питания для шуруповерта из компьютерного АТХ

Батарейные шуруповерты очень удобны в использовании и получили широкое распространение, как у профессионалов, так и у домашних мастеров. Самой первой, как правило, приходит в негодность батарея. В настоящий момент все производители электроинструмента перешли на литиевые батареи и приобрести новую никель-кадмиевую батарею на старый шуруповерт становится все проблематичней, а цены на эти батареи гораздо выше, чем на литиевые.

Конечно, существует возможность покупки аккумуляторов на различных сервисах, торгующих китайскими товарами. Но нужно время, пока придет посылка с «банками» и опять же, это определенные затраты. Существует альтернатива покупке батареи/банок — подключить шуруповерт к сетевому блоку питания и забыть про быстрый разряд батареек. Мощный блок питания на Алиэкспресс. Появляется много неудобств из-за сетевого шнура, но всегда приходится чем-то жертвовать.

Какой ток потребляет шуруповерт

Прежде, чем подбирать подходящий блок питания, нужно понять, на какой потребляемый ток нужно рассчитывать. К сожалению, производители аккумуляторных шуруповертов не указывают ток, потребляемый двигателем. Емкость самого аккумулятора в ампер-часах, которая обязательно указанна на батарее, не позволяет понять какой ток потребляет шуруповерт в рабочем режиме. Максимум, что может указать производитель, это мощность в ваттах, но это бывает очень редко, обычно мощность указанна непосредственно в силе крутящего момента.

Если мощность в ваттах все-таки указанна, мы можем иметь представление о потребляемом токе и подобрать соответствующий блок питания с небольшим запасом по току/мощности. Для вычисления силы тока достаточно разделить мощность в ваттах на рабочее напряжение шуруповерта, в данном случае это 12 вольт. Итак, если производитель указал мощность например 200 ватт — 200:12=16,6 А — такой ток потребляет шуруповерт в рабочем режиме.

Однако указанная мощность это большая редкость и нет универсальной цифры, характеризующей все 12-ти вольтовые шуруповерты. Нужно понимать, что при полном торможении вала двигателя, токи могут значительно превышать номинальные и вычислить эту величину очень не просто. В то же время, анализ различных форумов и собственного опыта показали — для работы шуруповерта зачастую достаточно тока в 10 А, этого достаточно для выполнения многих функций закручивания и сверления. При этом известно, что броски тока при полном торможении вала могут превышать 30 А.

Ну и какой же вывод можно сделать из всего этого? Для шуруповерта подойдет блок питания 12 В дающий 10 А тока, если имеется возможность использовать блок 20-30 А, это даже лучше. Это среднестатистические цифры, применимые к большинству шуруповертов.

Блок питания

Мы не будем рассматривать покупку каких-либо блоков или трансформаторов, если уж и покупать, то новую батарею! Мы рассмотрим возможность использовать то, что есть под рукой. Скажу сразу — зарядное устройство от того же шуруповерта подойдет лишь для сверления переспелых бананов, мощность его слишком низкая.

В идеале подойдет понижающий, мощный трансформатор 12 В, например от компьютерного бесперебойника. Мощность такого трансформатора обычно 350-500 ватт. Но у меня не было в наличии такого трансформатора, зато было много компьютерных блоков питания. Уверен, что если у кого-то имеется различный электронный хлам, компьютерные АТХ в нем обязательно завалялись.

Это один из первых представителей компьютерных АТХ блоков питания.

Компьютерный АТХ-блок вполне подходит для шуруповерта, нагрузочная способность по шине +12 вольт позволяет снять токи 10-20 ампер. Хочется развеять небольшой миф — запихать блок в корпус батареи шуруповерта не получится, уж слишком большая плата у АТХ. Придется делать блоку отдельный корпус или оставить его в родном, металлическом корпусе. Недостаток родного корпуса — чувствительность к пыли, а ведь даже самый маленький ремонт — это много пыли.

Довольно слабенький блок, по шине +12В нагрузка всего 10 А. По возможности, лучше выбирать блоки с более мощной двенадцативольтовой шиной.

Пробные тесты

Прежде, чем приниматься за сооружение рабочей конструкции, следует протестировать все на «коленках», убедиться в стабильности работы шуруповерта под нагрузкой и отсутствии сильных перегревов в блоке питания.

Берем компьютерный блок питания и проверяем его: включаем в сеть, в выходном пучке проводов находим зеленый (говорят он может быть другого цвета, но мне всегда попадались зеленые) и замыкаем его перемычкой на любой из черных (все черные провода на выходе — общий вывод, в нашем случае он минус). Блок должен включиться, между черными и желтыми проводами появится напряжение 12 вольт. Проверить это можно мультиметром или подключив к названным выводам любой компьютерный кулер.

Если все в порядке и блок выдает около 12 вольт на желтом(+) и черном(-) выводах, продолжаем. Если же напряжение на выходе отсутствует — ищем другой блок или ремонтируем этот, эта отдельная тема будет описана отдельно.

Отрезаем штекер от выхода блока и берем по 3-4 желтых и черных проводов, идущих из блока и соединяем их параллельно. Отрезая штекер, не забудьте о зеленом пусковом проводнике, он должен быть замкнут на черный. Мы получили источник 12 В с приличной нагрузочной способностью по току в 10-20 А, токи зависят от модели и мощности блока.

Теперь нужно подцепить наши 12 В к клеммам шуруповерта без батареи, полярность подключения смотрим по батарее. Ну и проверяем шуруповерт — на холостом ходу, потом притормаживая рукой. На этом этапе я столкнулся с проблемой: при полном нажатии кнопки шуруповерт работает, при медленном, плавном нажатии кнопки шуруповерта блок питания уходит в защиту. Для сброса защиты необходимо отключать блок от сети и включать заново. Совсем не пойдет, нужно как-то исправлять такую нестабильность.

Я вытащил плату блока из корпуса и подцепил дополнительно мультиметр, для постоянного контроля напряжения

На мой взгляд, такое явление может возникать из-за того, что блоком питания и кнопкой шуруповерта управляют ШИМ-контроллеры, из-за помех по проводам питания, контроллеры как-то мешают друг другу. Пробуем решить эту проблему использованием импровизированного LC-фильтра.

Я собрал фильтр за 5 минут из того что было под рукой: 3 электролитических конденсатора по 1000 мкф на 16 вольт, неполярного конденсатора менее 1 мкф и намотал 20 витков медного провода диаметром 2 мм на ферритовое колечко от другого блока. Вот его схема:

А вот так он выглядит. Это чисто пробная версия, в дальнейшем эта конструкция перенесется в корпус батареи шуруповерта и будет выполнена аккуратнее.

Проверяем всю конструкцию: блок не уходит в защиту при любых положениях кнопки, великолепно! Теперь можно попробовать закрутить несколько саморезов — все пучечком. Чувствуется, что шуруповерт сможет закрутить и более крупные саморезы.

Ну чтож, теперь нужно убрать все сопли и кучи проводов, вытащить из корпуса батареи «сдохшие банки», заменив их на LC-фильтр и уже потестировать шуруповерт в более реальных условиях.

Сборка рабочей конструкции

Для удобства пользования и подключения, я вывел шнур от блока питания в корпус батареи. Шнур взял 3,5 метра длинной, какой был в наличии. Из батареи удалил все аккумуляторные элементы и вмонтировал LC-фильтр. Теперь, если у меня появится каким-то образом исправная батарея — ее всегда можно будет поставить на шуруповерт, а блок питания убрать про запас. Аккумуляторы из батареи не выбросил, есть идея где их применить, но это тема для другого обзора.

Так как шнур, соединяющий блок с шуруповертом, обладает определенным сопротивлением и индуктивностью, можно попробовать замкнуть перемычкой выводы катушки L1. Теоретически, это может повысить мощность на мизерное значение.

Со шнуром шуруповерт себя отлично чувствует, но если честно, мне он показался несколько слабоватым при торможении рукой. Но пробные закручивания саморезов развеяли мои сомнения: саморезы длинной 35 мм спокойно закручиваются в фанеру 20 мм. Это означает, что шуруповерт будет удовлетворять большинство потребностей в ремонте.

У блока я отрезал все выходные провода, оставив зеленый стартовый, его конец я припаял к общему проводнику платы, куда впаяны все черные. Лучше всего аккуратно выпаять все провода, но мой паяльник был слишком слабый для этого и пришлось обрезать. К общему контакту и +12 (куда впаяны желтые) припаял два коротких, жестких медных провода и соединил через клемник со шнуром к шурику.

На этом мы закончим данный обзор, желаемого мы добились — шуруповерт отлично работает от компьютерного блока питания. В дальнейшем планирую сделать для платы блока питания добротный фанерный корпус без щелей — тесты показали, радиаторы на плате совсем не греются и можно не беспокоиться о перегреве элементов в закрытом корпусе.

Немного дополнений

Для компенсации потерь в шнуре, соединяющем шуруповерт с блоком питания, полезно поднять напряжение на 2-3 вольта. Но это при условии, что вы знаете схемотехнику компьютерных АТХ и знаете что делать.

Если есть возможность использовать мощный трансформатор, то на его выходной, вторичной обмотке должно быть переменное напряжение 12 В. Если напряжение отличается, рекомендуется подкорректировать вторичную обмотку путем отматывания (если напряжение больше 12 В) или доматывания (если меньше 12 В) нескольких витков. Стоит заметить, что при выпрямлении и фильтрации переменного напряжения 12 В получается около 14.4 В без нагрузки. Так пусть вас это не смущает, это напряжение ЭДС и это закономерно, что оно выше номинального.

Дополнительно к трансформатору собирается выпрямитель, диоды должны спокойно держать 30 А. Конденсаторный фильтр целесообразнее расположить в корпусе батареи, как в варианте с АТХ.


Оцените публикацию: Оценка: 4.3 (21 голосов)

Смотрите также другие статьи

Компьютерный блок питания не держит нагрузку

В этой статье, я немного расскажу об основах ремонта компьютерных, импульсных блоков питания стандарта ATX. Это одна из первых моих статей, я написал её примерно 5 лет назад, по этому прошу строго не судить.

Меры предосторожности.
Ремонт импульсных БП, довольно опасное занятие, особенно если неисправность касается горячей части БП. Поэтому делаем всё вдумчиво и аккуратно, без спешки, с соблюдением техники безопасности.

Силовые конденсаторы могут длительное время держать заряд, поэтому не стоит прикасаться к ним голыми руками сразу после отключения питания. Ни в коем случае не стоит прикасаться к плате или радиаторам при подключенном к сети блоке питания.

Для того чтобы избежать фейерверка и сохранить ещё живые элементы следует впаять 100 ватную лампочку вместо предохранителя. Если при включении БП в сеть лампа вспыхивает и гаснет – все нормально, а если при включении лампа зажигается и не гаснет – где-то короткое замыкание.

Проверять блок питания после выполненного ремонта следует вдали от легко воспламеняющихся материалов.

Паяльник, припой, флюс. Рекомендуется паяльная станция с регулировкой мощности или пара паяльников разной мощности. Мощный паяльник понадобиться для выпаивания транзисторов и диодных сборок, которые находятся на радиаторах, а так же трансформаторов и дросселей. Паяльником меньшей мощности паяется разная мелочевка.
Отсос для припоя и (или) оплетка. Служат для удаления припоя.
Отвертка
Бокорезы. Используются для удаления пластиковых хомутов, которыми стянуты провода.
Мультиметр
Пинцет
Лампочка на 100Вт
Очищенный бензин или спирт. Используется для очистки платы от следов пайки.
Устройство БП.

Немного о том, что мы увидим, вскрыв блок питания.

Внутреннее изображение блока питания системы ATX

A – диодный мост, служит для преобразования переменного тока в постоянный

B – силовые конденсаторы, служат для сглаживания входного напряжения

Между B и C – радиатор, на котором расположены силовые ключи

C – импульсный трансформатор, служит для формирования необходимых номиналов напряжения, а также для гальванической развязки

между C и D – радиатор, на котором размещены выпрямительные диоды выходных напряжений

D – дроссель групповой стабилизации (ДГС), служит для сглаживания помех на выходе

E – выходные, фильтрующие, конденсаторы, служат для сглаживания помех на выходе

Распиновка разъема 24 pin и измерение напряжений.

Знание контактов на разъеме ATX нам понадобится для диагностики БП. Прежде чем приступать к ремонту следует проверить напряжение дежурного питания, на рисунке этот контакт отмечен синим цветом +5V SB, обычно это фиолетовый провод. Если дежурка в порядке, то следует проверить наличие сигнала POWER GOOD (+5V), на рисунке этот контакт помечен серым цветом, PW-OK. Power good появляется только после включения БП. Для запуска БП замыкаем зеленый и черный провод, как на картинке. Если PG присутствует, то, скорее всего блок питания уже запустился и следует проверить остальные напряжения. Обратите внимание, что выходные напряжения будут отличаться в зависимости от нагрузки. Так, что если увидите на желтом проводе 13 вольт, не стоит беспокоиться, вполне вероятно, что под нагрузкой они стабилизируются до штатных 12 вольт.

Если у вас проблема в горячей части и требуется измерить там напряжения, то все измерения надо проводить от общей земли, это минус диодного моста или силовых конденсаторов.

Первое, что следует сделать, вскрыть блок питания и произвести визуальный осмотр.

Если БП пыльный вычищаем его. Проверяем, крутится ли вентилятор, если он стоит, то это, скорее всего и является причиной выхода из строя БП. В таком случае следует смотреть на диодные сборки и ДГС. Они наиболее склонны к выходу из строя из- за перегрева.

Далее осматриваем БП на предмет сгоревших элементов, потемневшего от температуры текстолита, вспученных конденсаторов, обугленной изоляции ДГС, оборванных дорожек и проводов.

Перед вскрытием блока питания можно попробовать включить БП, чтобы наверняка определиться с диагнозом. Правильно поставленный диагноз – половина лечения.

БП не запускается, отсутствует напряжение дежурного питания
БП не запускается, но дежурное напряжение присутствует. Нет сигнала PG.
БП уходит в защиту,
БП работает, но воняет.
Завышены или занижены выходные напряжения
Предохранитель.

Блок питания Zalman ZM600-GSII не держит нагрузку.

Всем привет!
Блок питания Zalman ZM600-GSII. ШИМ 6800, супервайзер WT7525.
Достался мне с горелым предохранителем и битым силовым транзистором. Я их заменил, но теперь блок включается через раз. Вернее он включается в один из двух режимов:
Первый — в котором напряжения 12В и 5В сильно занижены. Вместо 12 — 7, вместо 5 — 2,5. Нормальное значение только 3,3В. Также в этом режиме напряжение питания ШИМа тоже занижено и равно 10В.
Второй — все напряжения в норме, напряжение питания ШИМа — 13В. Китайский тестер блоков питания с экраном не показывает никаких отклонений. Даже время PG 260ms в норме. Но, он совершенно не держит нагрузку. Подключаю винт и блок тухнет. В два этих состояния, при включении, он впадает хаотически.
Тут некоторые осциллограммы режима, когда он включился с нормальными напряжениями. Если нужны еще какие-нибудь, сделаю.

  • 8 комментариев
  • Подробнее
  • 89 просмотров

Блок питания Thermaltake TR2-420 NP w0062 не держит нагрузку

Добрый день!
Блок питания Thermaltake TR2-420 NP w0062 не держит нагрузку. При работе компьютер начал самопроизвольно перезагружаться, выключаться. После включения по нажатию кнопки, компьютер включался на несколько секунд и потом опять выключался. После нескольких таких циклов компьютер перестал включаться совсем.
Снял блок питания, снял верхнюю крышку.

  • 33 комментария
  • Подробнее
  • 582 просмотра

Chieftec APS-750C не держит нагрузку.

Имеется данный БП, который перестал нормально работать. Он включается, работает стабильно, но не в играх. В играх через минут 5-20 — выключается(смотря во что играть ещё).

Замер напряжения показал, что всё в норме везде, кроме 12В. Вместо нормальных 12В там — 11.4В при запущенном ПК без игр и прочего.

  • 10 комментариев
  • Подробнее
  • 186 просмотров

DNP-550 не держит нагрузку

Здравствуйте!) опыта в ремонте совсем немного, но может с вашей помощью чтото получится. В общем, блок стартует, напряжения на выходах в норме, всё казалось бы работает (gtx 560, hdd, dvd, i5), но стоит запустить игру — происходит перезагрузка. То же самое если, к примеру, подключить к нему галогенку 70ватт. С другим блоком всё исправно работает. защита на UTC339 шим 7500. конденсаторы на выходе 12 вольт не вспухшие, но были подозрения что подтекли (изза клея непонятно). Заменил.

  • 6 комментариев
  • Подробнее
  • 394 просмотра

Thermaltake Purepower 430W (W0051), не держит нагрузку.

Приветствую всех участников!
Принесли блок Thermaltake Purepower 430W (W0051), плата: Sirtec no-526-2 rev:a2 , ШИМ: SG6105. Блок работает исправно на маленькую нагрузку. Дежурка, все напряжения в норме. При нагрузке линии 12+ вольт происходит шипение — шуршание, напряжение проседает до 10 (проседает именно 12+ линия, по всем остальным линиям напряжение при этом остаётся в пределах нормы). Дальнейшее увеличение нагрузки ведёт к выключению БП, в защиту при этом не уходит. Заменил: все электролиты, силовые транзисторы, транзисторы раскачки, диодные сборки, ШИМ.

  • 8 комментариев
  • Подробнее
  • 1629 просмотров

JNC model:SY-300ATX не держит нагрузку

Доброго времени суток, уважаемые форумчане. Попал в ремонт блок JNC SY-300ATX, не включается, вскрытие показало, сгорел предохранитель, два диода в диодном мосте, транзистор с5027 (заменил на с3150), транзистор с945, диод 1n4148, и вспухли два электролита 16v 1000mF. заменил всё выше перечисленное, блок завёлся, напруги в норме, материнка запускается и работает. когда подключаю отдельно лампочку 12В 55 Ватт, блок глохнет.

Входные конденсаторы 200В 330мФ, транзисторы stb std13007, выходные sbl2040ct, sb1040ct и два спаренных диода, шим АТ 2005. Куда копать и что проверять?

  • 8 комментариев
  • 1800 просмотров
  • 3 вложения

COLORSIT 400U-SCE, не держит нагрузку.

На форуме уже были темы про колоршит, но к сожалению ни одна не подошла мне по симптомам. Есть сабж, при запуске в холостую все напряжения есть, но с одним но. Если смотреть осцилом выход 3.3В. то примерно через каждые полсекунды наблюдается провал до 0.8В, потом восстановление 3.3В. Это без нагрузки. На шиме SG6105 на выводах OP1 OP2 присутствуют пачки импульсов прерывающиеся тогда когда наблюдается провал. Провал длится 50 мс. При подаче нагрузки порядка 1А на канал 3.3В блок улетает в защиту.

Блок питания Zalman ZM600-GSII не держит нагрузку.

Всем привет!
Блок питания Zalman ZM600-GSII. ШИМ 6800, супервайзер WT7525.
Достался мне с горелым предохранителем и битым силовым транзистором. Я их заменил, но теперь блок включается через раз. Вернее он включается в один из двух режимов:
Первый — в котором напряжения 12В и 5В сильно занижены. Вместо 12 — 7, вместо 5 — 2,5. Нормальное значение только 3,3В. Также в этом режиме напряжение питания ШИМа тоже занижено и равно 10В.
Второй — все напряжения в норме, напряжение питания ШИМа — 13В. Китайский тестер блоков питания с экраном не показывает никаких отклонений. Даже время PG 260ms в норме. Но, он совершенно не держит нагрузку. Подключаю винт и блок тухнет. В два этих состояния, при включении, он впадает хаотически.
Тут некоторые осциллограммы режима, когда он включился с нормальными напряжениями. Если нужны еще какие-нибудь, сделаю.

  • 8 комментариев
  • Подробнее
  • 89 просмотров

Блок питания Thermaltake TR2-420 NP w0062 не держит нагрузку

Добрый день!
Блок питания Thermaltake TR2-420 NP w0062 не держит нагрузку. При работе компьютер начал самопроизвольно перезагружаться, выключаться. После включения по нажатию кнопки, компьютер включался на несколько секунд и потом опять выключался. После нескольких таких циклов компьютер перестал включаться совсем.
Снял блок питания, снял верхнюю крышку.

  • 33 комментария
  • Подробнее
  • 582 просмотра

Chieftec APS-750C не держит нагрузку.

Имеется данный БП, который перестал нормально работать. Он включается, работает стабильно, но не в играх. В играх через минут 5-20 — выключается(смотря во что играть ещё).

Замер напряжения показал, что всё в норме везде, кроме 12В. Вместо нормальных 12В там — 11.4В при запущенном ПК без игр и прочего.

  • 10 комментариев
  • Подробнее
  • 186 просмотров

DNP-550 не держит нагрузку

Здравствуйте!) опыта в ремонте совсем немного, но может с вашей помощью чтото получится. В общем, блок стартует, напряжения на выходах в норме, всё казалось бы работает (gtx 560, hdd, dvd, i5), но стоит запустить игру — происходит перезагрузка. То же самое если, к примеру, подключить к нему галогенку 70ватт. С другим блоком всё исправно работает. защита на UTC339 шим 7500. конденсаторы на выходе 12 вольт не вспухшие, но были подозрения что подтекли (изза клея непонятно). Заменил.

  • 6 комментариев
  • Подробнее
  • 394 просмотра

Thermaltake Purepower 430W (W0051), не держит нагрузку.

Приветствую всех участников!
Принесли блок Thermaltake Purepower 430W (W0051), плата: Sirtec no-526-2 rev:a2 , ШИМ: SG6105. Блок работает исправно на маленькую нагрузку. Дежурка, все напряжения в норме. При нагрузке линии 12+ вольт происходит шипение — шуршание, напряжение проседает до 10 (проседает именно 12+ линия, по всем остальным линиям напряжение при этом остаётся в пределах нормы). Дальнейшее увеличение нагрузки ведёт к выключению БП, в защиту при этом не уходит. Заменил: все электролиты, силовые транзисторы, транзисторы раскачки, диодные сборки, ШИМ.

  • 8 комментариев
  • Подробнее
  • 1629 просмотров

JNC model:SY-300ATX не держит нагрузку

Доброго времени суток, уважаемые форумчане. Попал в ремонт блок JNC SY-300ATX, не включается, вскрытие показало, сгорел предохранитель, два диода в диодном мосте, транзистор с5027 (заменил на с3150), транзистор с945, диод 1n4148, и вспухли два электролита 16v 1000mF. заменил всё выше перечисленное, блок завёлся, напруги в норме, материнка запускается и работает. когда подключаю отдельно лампочку 12В 55 Ватт, блок глохнет.

Входные конденсаторы 200В 330мФ, транзисторы stb std13007, выходные sbl2040ct, sb1040ct и два спаренных диода, шим АТ 2005. Куда копать и что проверять?

  • 8 комментариев
  • 1800 просмотров
  • 3 вложения

COLORSIT 400U-SCE, не держит нагрузку.

На форуме уже были темы про колоршит, но к сожалению ни одна не подошла мне по симптомам. Есть сабж, при запуске в холостую все напряжения есть, но с одним но. Если смотреть осцилом выход 3.3В. то примерно через каждые полсекунды наблюдается провал до 0.8В, потом восстановление 3.3В. Это без нагрузки. На шиме SG6105 на выводах OP1 OP2 присутствуют пачки импульсов прерывающиеся тогда когда наблюдается провал. Провал длится 50 мс. При подаче нагрузки порядка 1А на канал 3.3В блок улетает в защиту.

Как устроен блок питания, часть 5. Выходной выпрямитель, фильтр и цепь обратной связи импульсных блоков питания

В качестве самой просто схемы я покажу вариант с одним диодом и конденсатором. Такая схема используется в обратноходовых блоках питания, которые составляют сейчас подавляющее большинство.

В готовом блоке питания она выглядит так, как показано на этом фото.
Такие блоки питания чаще всего идут в комплекте с недорогой техникой.

Следующим шагом идет двухполупериодный выпрямитель. Эта схема использовал раньше весьма часто, но в последнее время вытеснена другой, которую я покажу позже.
Такая схемотехника чаще всего встречается в мощных блоках питания, особенно она удобна в нерегулируемых блоках на базе драйвера IR2151-2153, о которых я рассказывал в прошлой части.

Как я тогда сказал, она хорошо подходит для построения первичных источников питания, которые не являются стабилизированными, но которые имеют хороший КПД и могут использовать для питания других устройств, например как этот блок питания лабораторного источника питания.

Особое преимущество данной схемы в том, что ее очень легко переделать в двухполярную и использовать для питания усилителей мощности. В таком варианте добавляется всего пара диодов и конденсатор.

Когда мощности обратноходовой схемотехники не хватает, то используют ее прямоходовый вариант. Здесь энергия при одном такте сначала накапливается в дросселе, а потом через нижний диод поступает в нагрузку. Данная схемотехника очень похожа на схему классического StepDown преобразователя.

Заметить что блок питания собран по такой схемотехнике очень просто, на плате будет большой дроссель. В качестве фильтрующих дроссели с таким габаритом используют крайне редко, потому ошибиться сложно.

Но есть альтернативный вариант этой схемы. Он применяется чаще всего в компьютерных блоках питания и ведет свои истоки от первых БП формата АТ.

Здесь присутствует накопительный дроссель, а первичная обмотка силового трансформатора связана с одной из обмоток трансформатора управления. Если изъять дроссель из этой схемы, то блок питания при нагрузке выше определенной выйдет из строя.
То же самое касается и предыдущей схемы.

Отличить блоки питания последних двух типов очень легко, слева БП построенный по аналогии блока питания АТ формата, у него сразу заметен трансформатор около транзисторов, справа однотактный прямоходовый, трансформатора здесь нет.
Дроссели имеют разные размеры, но это следствие разной рабочей частоты и иногда экономии производителя. Меньший дроссель в работе скорее всего будет перегреваться, да и схема можно работать не очень надежно при максимальной мощности.

Чаще всего в качестве выходных диодов импульсных блоков питания используются диоды Шоттки. Они имеют два важных преимущества перед обычными:
1. Падение напряжения на них в 1.5-2 раза меньше
2. Они быстрее, чем обычные диоды, потому имеют меньше потер при переключении.

В блоках питания рассчитанных на высокое выходное напряжение применяют чаще всего обычные диоды, так как прямое падение у высоковольтных обычных и Шоттки примерно одинаково. Но из-за того что Шоттки быстрее, можно получить уменьшенные потери на снаббере, потому я советую применять их и здесь.

Так как после выпрямления на конденсаторе будут присутствовать заметные пульсации, то после него ставят LC фильтр или говоря простым языком — дроссель и конденсатор

Для примера «народный» блок питания где явно виден как дроссель, так и два конденсатора.

Дроссель необязательно будет большим, а вполне может быть совсем миниатюрным. Работать правда он будет хуже, но это лучше чем ничего.

Иногда дроссель вообще не ставят, хотя место под него есть. Это банальная экономия «на спичках», я всегда рекомендую установить на это место дроссель.

Для примера уровень пульсаций без дросселя и с дросселем. Но стоит учитывать, что после установки дросселя пульсации на первом конденсаторе вырастут, так как на него будет приходится «ударный» ток. Обычно именно он выходит из строя первым.

Улучшить ситуацию можно установив параллельно электролитическим конденсаторам керамические. Данная мера можно существенно облегчить режим работы электролитов. Но стоит иметь в виду, что эффективно они работают только при относительно небольших мощностях БП, а точнее при относительно небольших токах. Можно конечно поставить много таких конденсаторов, но это дорого и габаритно.

При доработке конденсаторы можно напаивать прямо на выводы электролитических конденсаторов.
Я применяю конденсаторы с емкостью 0.1-0.47мкФ.

Чтобы еще немного улучшить качество работы, следует внимательнее отнестись к разводке печатной платы. Если страссировать плату по типу того как я показал на схеме, то пульсации могут еще немного уменьшиться, тем более что это бесплатно.

Ну и последний шаг, установка синфазного дросселя на выходе блока питания. Такое применяется чаще всего в фирменных блоках питания, которым требуется проходить сертификацию на уровень помех излучаемых в эфир. В дешевых практически никогда не встречается.

Теперь об выходных конденсаторах.
Если вы пользуетесь дешевыми блоками питания, то скорее всего на выходе увидите либо вообще безымянные модели.

Либо подделку под фирменные. Например в народном блоке питания применяют подделки под Sanyo или Nichicon, проверить очень просто, по маркировке. Скорее всего вы либо вообще не найдете конденсаторов такой серии, либо в этой серии не будет такого номинала с таким габаритом как у вас, либо внешне они будут отличаться цветом, как в данном случае.
Такие подделки на самом деле не самый худший вариант, но лучше применять фирменные.
Кстати в двухтактных БП конденсаторы обычно живут дольше и требования к их качеству меньше чем у обратноходовых однотактных.

Но все равно, лучше применять именно фирменные конденсаторы, а не суррогаты с их именем. На фото блок питания фирмы Менвелл.

Для облегчения работы конденсаторов есть способ, когда вместо одного двух емких устанавливают много менее емких конденсаторов. В таком варианте нагрузка лучше распределяется и конденсаторы живут дольше.

Схема стабилизации.
Самый простой вариант — стабилизировать напряжение по обратной связи со вспомогательной обмотки трансформатора, правда такое решение и самое плохое в плане стабильности, так как влияет магнитная связь между обмотками и их активное сопротивление, зато дешево.

Следующий вариант сложнее, здесь в качестве порогового элемента применен стабилитрон. В таком варианте выходное напряжение Бп будет равно падению на стабилитроне + напряжению на светодиоде оптрона. Характеристики схемы так себе, но вполне приемлемы для некритичных нагрузок.

Например блок питания с такой стабилизацией. Сверху около оптрона ничего нет.

Снизу расположен стабилитрон и несколько резисторов

Но куда лучшие характеристики показывает схема с регулируемым стабилитроном TL431. Она имеет куда выше качество работы и точность поддержания в том числе лучше держит параметры при изменении температуры.

На плате она обычно выглядит так, как показано на фото.

Выглядит он примерно как обычный транзистор в корпусе ТО-92, отличие только в маркировке. Данный вариант встречается чаще всего. Альтернативный вариант, который вы можете встретить, SMD корпус SOT-23.

Расположение выводов в разных вариантах корпуса.

Например в «народном» блоке питания применен SMD вариант корпуса. На фото видны резисторы делителя обратной связи и вспомогательные, например «подтяжки» к питанию чтобы сформировать минимальный рабочий ток для стабилитрона.

Еще пара фото, сверху платы ничего нет, а стабилитрон TL431 находится снизу.

Иногда в цепи обратной связи ставят подстроечный резистор. Но сначала я скажу пару слов о том, как рассчитывается делитель.
Если применяется стандартный делитель из двух резисторов, то его номиналы подбираются таким образом чтобы при требуемом выходном напряжении в точке соединения было 2.5 Вольта, именно на это напряжение и рассчитана TL431, но стоит учитывать, что есть и более низковольтный вариант этой микросхемы, на 1.25 Вольта, хотя встречается он гораздо реже.
Теперь к подстроечному резистору. Для большего удобства на плате может располагаться подстроечный резистор, позволяющий менять выходное напряжение в небольших пределах, чаще всего +/- 10-20%, больший диапазон не рекомендуется, так как Бп может вести себя нестабильно.
Подстроечный резистор всегда должен стоять последовательно с нижним резистором делителя, тогда в случае выхода его из строя вы получите на выходе Бп минимальное напряжение, а не максимальное, как если бы подстроечный резистор стоял сверху.
Кроме того подстроечные резисторы часто имеют низкую надежность, и если вам не нужна эта функция, то лучше заменить его на постоянный, предварительно подобрав его номинал.

Полностью на плате весь этот узел выглядит следующим образом.

Пару слов о выходном нагрузочном резисторе.
Импульсный блок питания плохо работает без нагрузки, потому параллельно выходу обычно ставят нагрузочный резистор, обеспечивающий минимально необходимую нагрузку при которой БП работает стабильно.
Есть и минус у данного решения, резистор обычно греется, причем иногда заметно. Кроме того этот резистор может греть конденсаторы если они стоят рядом, как на этом фото.

Иногда они греются так, что на плате становятся видны следы перегрева. Но кроме того этот нагрев может плохо сказываться на стабильности БП если он подогревает резисторы делителя обратной связи и они при этом применены обычного типа, а не точные/термостабильные.
Резисторы греются, параметры начинают меняться и меняется выходное напряжение БП, потому рекомендуется располагать резисторы делителя так, чтобы они не были подвержены нагреву, а кроме того лучше применять точные резисторы, на которые нагрев влияет существенно меньше.

Иногда производители неправильно выбирают номинал нагрузочного резистора и он начинает греться сильнее чем допустимо. Например в 24 Вольте версии «народного» блока питания как раз была такая ситуация, пришлось поменять его потом на резистор в два раза большего номинала.

Чтобы ваши блоки питания работали надежно, следует внимательно отнесись к подбору компонентов.
Диоды выбираются из расчета двухкратного запаса для двухтактной схемы и трехкратного для однотактной, например БП 5-7 Ампер, значит диод ставим на 15-20.
Напряжение должно быть не менее чем в четыре раза больше чем выходное у блока питания, если БП на 12 Вольт, то диод на 60, если на 24, то на 100.
Все эти параметры есть в даташите на диоды

Также они указаны на самих диодах.

Конденсаторы следует выбирать низкоимпедансные или LowESR, это также обычно отражено в даташите на компонент.
Емкость выбираем из расчета 0.5-1 тысяч мкФ на 1 Ампер выходного тока. Напряжение — для двухтактной схемы 1.5-2 раза выше чем выходное, для обратноходовой однотактной — не менее чем 2х от выходного.

По фирмам смотрим чтобы были известные бренды, но это я писал и в статье про входной фильтр, здесь рекомендации аналогичны.




С выходным дросселем все гораздо проще, номинальный ток дросселя не менее чем максимальный выходной ток блока питания. Лучше применить дроссель на больший ток, тогда его нагрев будет существенно меньше. Индуктивность 4.7-22мкГн, зависит от выходного тока, так как дроссель на большой ток и индуктивность будет весьма большим.

Обычно дроссели выполняются либо в виде «гантельки», либо в «броневом» исполнении, вторые чаще предназначены для поверхностного монтажа.

В общих чертах на этом все, и конечно видеоверсия данной статьи. Как всегда буду рад вопросам и пожеланиям.

БЛОК ПИТАНИЯ КОМПЬЮТЕРА — Систематизированная полезная информация

Азбука ремонтника БП
 
Общие рекомендации:
Что желательно иметь для проверки БП.
а. — любой тестер (мультиметр).
б. — лампочки: 220 вольт 60 — 100 ватт и 6.3 вольта 0.3 ампера.
в. — паяльник, осциллограф, отсос для припоя.г. — увеличительное стекло, зубочистки, ватные палочки, технический спирт.
Наиболее безопасно и удобно включать ремонтируемый блок в сеть через разделительный трансформатор 220v — 220v.
Такой трансформатор просто изготовить из 2-х ТАН55 или ТС-180 (от ламповых ч/б телевизоров).
Просто соответствующим образом соединяются анодные вторичные обмотки, не надо ничего перематывать.
Оставшиеся накальные обмотки можно использовать для построения регулируемого БП.Мощность такого источника вполне достаточна для отладки и первоначального тестирования и дает массу удобств:- электробезопасность- возможность соединять земли горячей и холодной части блока единым проводом, что удобно для снятия осциллограмм.- ставим галетный переключатель — получаем возможность ступенчатого изменения напряжения.
Также для удобства можно зашунтировать цепи +310В резистором 75K-100K мощностью 2 — 4Вт — при выключении быстрее разряжаются входные конденсаторы.Если плата вынута из блока, проверьте, нет ли под ней металлических предметов любого рода.
Ни в коем случае НЕ ЛЕЗЬТЕ РУКАМИ в плату и НЕ ДОТРАГИВАЙТЕСЬ до радиаторов во время работы блока, а после выключения подождите около минуты,
пока конденсаторы разрядятся. На радиаторе силовых транзисторов может быть 300 и более вольт, он не всегда изолирован от схемы блока!
Принципы измерения напряжений внутри блока.
Обратите внимание, что на корпус БП земля с платы подаётся через проводники около отверстий для крепежных винтов.
Для измерения напряжений в высоковольтной («горячей») части блока (на силовых транзисторах, в дежурке)
требуется общий провод — это минус диодного моста и входных конденсаторов.
Относительно этого провода всё и измеряется только в горячей части, где максимальное напряжение — 300 вольт.
Измерения желательно проводить одной рукой.В низковольтной («холодной») части БП всё проще, максимальное напряжение не превышает 25 вольт.
В контрольные точки для удобства можно впаять провода, особенно удобно припаять провод на землю.
Проверка резисторов.Если номинал (цветные полоски) еще читается — заменяем на новые с отклонением не хуже оригинала (для большинства — 5%, для низкоомных в цепях датчика тока может быть и 0.25%).
Если же покрытие с маркировкой потемнело или осыпалось от перегрева — измеряем сопротивление мультиметром.
Если сопротивление равно нулю или бесконечности — вероятнее всего резистор неисправен и для определения его номинала потребуется принципиальная схема блока питания либо изучение типовых схем включения.
Проверка диодов.Если мультиметр имеет режим измерения падения напряжения на диоде — можно проверять, не выпаивая.
Падение должно быть от 0,02 до 0,7 В. Если падение — ноль или около того (до 0,005) – выпаиваем сборку и проверяем.
Если те же показания – диод пробит. Если же прибор не имеет такой функции, установите прибор на измерение сопротивления (обычно предел в 20кОм).
Тогда в прямом направлении исправный диод Шотки будет иметь сопротивление порядка одного — двух килоом, а обычный кремниевый — порядка трех — шести.
В обратном направлении сопротивление равно бесконечности.
Для проверки БП можно и нужно собрать нагрузку..
Вариант нагрузки для БП
Предлагаю свой вариант изготовления нагрузки для окончательной проверки блоков питания ATX.
Мной она была изготовлена в корпусе от АТХ БП фирмы FSP. Установлен дополнительный вентилятор на вдув.
Изоляционные основания из толстого стеклотекстолита. Контактные стойки от какого-то силового шкафа.
Сами нагрузочные спирали намотаны из нихрома. Двумя тумблерами осуществлена возможность коммутации по две и по три спирали в параллель на канал.
На канал +5VSB также установлена нихромовая спираль, рассчитанная на ток порядка 0.8А. На канал минус пять простой одноваттный резистор на 24 Ом, ток 0,2А. Канал минус 12 пока ничем не нагрузил, так как ничего кроме лампы 12V/5W пока не придумал, но хотелось бы от лампы все же уйти.
Для контроля наличия выходного напряжения установлены светодиоды — красные на основные каналы 12, 5 и 3,3 вольта, желтые на отрицательные каналы -5 и -12 вольт, зеленые (три штуки в параллель — просто случайно) — на канал +5VSB.
Контактные разъемы выпаяны из старых мамок, и впаяны на новые платы из стеклотекстолита, на них задействованы все контакты.
Коммутация нагрузки осуществляется двумя тумблерами — один на задней стенке блока, один — бывший переключатель 115в/230в.
Тут конечно недоработка — надо разместить три, или еще лучше шесть тумблеров аккуратно в ряд, и ими коммутировать нагрузку.
Контактные стойки позволяют разместить еще дополнительные спирали для дальнейшего увеличения/изменения мощности, если потребуется.
В таком виде, как получилось сейчас, у меня вышли следующие показатели:+3,3 7,3А/11А 24W/36W+5 10А/15,1А 50W/75W+12 7А/10,6А 84W/127W
Получается суммарная мощность около 162W или 242W.
Хотелось бы услышать мнения форумчан по поводу подбора оптимальных токов по каналам, для оптимизации конструкции, довода ее так сказать «до ума».
Ну и конечно слайды: Берём выпаянный из ненужной платы ATX разъём и припаиваем к нему провода сечением не менее 18 AWG, стараясь задействовать все контакты по линиям +5 вольт, +12 и +3.3 вольта.
Нагрузку надо рассчитывать ватт на 100 по всем каналам (можно с возможностью увеличения для проверок более мощных блоков).
Для этого берём мощные резисторы или нихром.
Также с осторожностью можно использовать мощные лампы (например, галогенные на 12В), при этом следует учесть, что сопротивление нити накаливания в холодном состоянии сильно меньше, чем в нагретом. Поэтому при запуске с вроде бы нормальной нагрузкой из ламп блок может уходит в защиту.
Параллельно нагрузкам можно подключить лампочки или светодиоды, чтобы видеть наличие напряжения на выходах.
Между выводом PS_ON и GND подключаем тумблер для включения блока.
Для удобства при эксплуатации можно всю конструкцию разместить в корпусе от БП с вентилятором для охлаждения.
Проверка блока:
Можно предварительно включить БП в сеть, чтобы определиться с диагнозом: нет дежурки (проблема с дежуркой, либо КЗ в силовой части),
есть дежурка, но нет запуска (проблема с раскачкой или ШИМ), БП уходит в защиту (чаще всего — проблема в выходных цепях либо конденсаторах),
завышенное напряжение дежурки (90% — вспухшие конденсаторы, и часто как результат — умерший ШИМ).
Начальная проверка блока
Снимаем крышку и начинаем проверку, особое внимание обращая на поврежденные, изменившие цвет, потемневшие или сгоревшие детали.
1. Предохранитель. Как правило, перегорание хорошо заметно визуально,
но иногда он обтянут термоусадочным кембриком – тогда проверяем сопротивление омметром.
Перегорание предохранителя может свидетельствовать, например, о неисправности диодов входного выпрямителя,
ключевых транзисторов или схемы дежурного режима.
2. Дисковый термистор. Выходит из строя крайне редко. Проверяем сопротивление — должно быть не более 10 Ом.
В случае неисправности заменять его перемычкой нежелательно — при включении блока резко возрастет импульсный ток заряда входных конденсаторов,
что может привести к пробою диодов входного выпрямителя.
3. Диоды или диодная сборка входного выпрямителя.
Проверяем мультиметром (в режиме измерения падения напряжения) на обрыв и короткое замыкание каждый диод, можно не выпаивать их из платы.
При обнаружении замыкания хотя бы у одного диода рекомендуется также проверить входные электролитические конденсаторы,
на которые подавалось переменное напряжение, а также силовые транзисторы, т.к. очень велика вероятность их пробоя.
В зависимости от мощности БП диоды должны быть рассчитаны на ток не менее 4…8 ампер.
Двухамперные диоды, часто встречающиеся в дешевых блоках, сразу меняем на более мощные.
4. Входные электролитические конденсаторы. Проверяем внешним осмотром на вздутие
(заметное изменение верхней плоскости конденсатора от ровной поверхности к выпуклой),
также проверяем емкость — она не должна быть ниже обозначенной на маркировке и отличаться у двух конденсаторов более чем на 5%.
Также проверяем варисторы, стоящие параллельно конденсаторам,
(обычно явно сгорают «в уголь») и выравнивающие резисторы (сопротивление одного не должно отличаться от сопротивления другого более чем на 5%).
5. Ключевые (они же — силовые) транзисторы.
Для биполярных — проверяем мультиметром падение напряжения на переходах «база-коллектор» и «база-эмиттер» в обоих направлениях.
В исправном биполярном транзисторе переходы должны вести себя как диоды.
При обнаружении неисправности транзистора также необходимо проверить всю его «обвязку»:
диоды, низкоомные резисторы и электролитические конденсаторы в цепи базы (конденсаторы лучше сразу заменить на новые большей емкости, например, вместо 2.2мкФ * 50В ставим 10.0мкФ * 50В).
Также желательно зашунтировать эти конденсаторы керамическими емкостью 1.0…2.2 мкФ.6.
Выходные диодные сборки. Проверяем их мультиметром, наиболее частая неисправность — короткое замыкание.
Замену лучше ставить в корпусе ТО-247. В ТО-220 чаще помирают…
Обычно для 300-350 Вт блоков диодных сборок типа MBR3045 или аналогичных на 30А — с головой.
7. Выходные электролитические конденсаторы.
Неисправность проявляется в виде вздутия, следов коричневого пуха или потеков на плате (при выделении электролита).
Меняем на конденсаторы нормальной емкости, от 1500 мкФ до 2200…3300 мкФ, рабочая температура — 105° С.
Желательно использовать серии LowESR.
8. Также измеряем выходное сопротивление между общим проводом и выходами блока.
По +5В и +12В вольтам — обычно в районе 100-250 ом (то же для -5В и -12В), +3.3В — около 5…15 Ом.
Потемнение или выгорание печатной платы под резисторами и диодами свидетельствует о том,
что компоненты схемы работали в нештатном режиме и требуется анализ схемы для выяснения причины.
Обнаружение такого места возле ШИМа означает, что греется резистор питания ШИМ 22 Ома от превышения дежурного напряжения и,
как правило, первым сгорает именно он. Зачастую ШИМ в этом случае тоже мертв, так что проверяем микросхему (см. ниже).
Такая неисправность — следствие работы «дежурки» в нештатном режиме, обязательно следует проверить схему дежурного режима.
Проверка высоковольтной части блока на короткое замыкание.
Берём лампочку от 40 до 100 Ватт и впаиваем вместо предохранителя или в разрыв сетевого провода.
Если при включении блока в сеть лампа вспыхивает и гаснет — все в порядке,
короткого замыкания в «горячей» части нет — лампу убираем и работаем дальше без нее (ставим на место предохранитель или сращиваем сетевой провод).
Если при включении блока в сеть лампа зажигается и не гаснет — в блоке короткое замыкание в «горячей» части.
Для его обнаружения и устранения делаем следующее:
1. Выпаиваем радиатор с силовыми транзисторами и включаем БП через лампу без замыкания PS-ON.
2.Если короткое (лампа горит, а не загорелась и погасла) — ищем причину в диодном мосте, варисторах, конденсаторах, 
переключателе 110/220V(если есть, его вообще лучше выпаять).
3. Если короткого нет — запаиваем транзистор дежурки и повторяем процедуру включения.
4. Если короткое есть — ищем неисправность в дежурке.Внимание!
Возможно включение блока (через PS_ON) с небольшой нагрузкой при не отключенной лампочке,
но во-первых, при этом не исключена нестабильная работа БП, во-вторых, лампа будет светиться при включении БП со схемой APFC.
Проверка схемы дежурного режима (дежурки).
Много полезной информации здесь:
Источник дежурного напряжения.
Схемы. Принцип работы.здесь:
Проверка и настройка ДЕЖУРКИ на пониженном напряжении.и здесь:
Свист дежурки и как с ним бороться.
Краткое руководство: проверяем ключевой транзистор и всю его обвязку (резисторы, стабилитроны, диоды вокруг).
Проверяем стабилитрон, стоящий в базовой цепи (цепи затвора) транзистора (в схемах на биполярных транзисторах номинал от 6В до 6.8В, на полевых, как правило, 18В). Если всё в норме, обращаем внимание на низкоомный резистор (порядка 4,7 Ом) — питание обмотки трансформатора дежурного режима от +310В (используется как предохранитель, но бывает и трансформатор дежурки сгорает) и 150k~450k (оттуда же в базу ключевого транзистора дежурного режима) — смещение на запуск. Высокоомные часто уходят в обрыв, низкоомные — так же «успешно» сгорают от токовой перегрузки.
Меряем сопротивление первичной обмотки дежурного транса — должно быть порядка 3 или 7 Ом.
Если обмотка трансформатора в обрыве (бесконечность) — меняем или перематываем транс.
Бывают случаи, когда при нормальном сопротивлении первичной обмотки трансформатор оказывается нерабочим (имеются короткозамкнутые витки).
Такой вывод можно сделать, если вы уверены в исправности всех остальных элементов дежурки.Проверяем выходные диоды и конденсаторы.
При наличии обязательно меняем электролит в горячей части дежурки на новый, припаиваем параллельно нему керамический или пленочный конденсатор 0.15…1.0 мкФ (важная доработка для предотвращения его «высыхания»).
Отпаиваем резистор, ведущий на питание ШИМ. Далее на выход +5VSB (фиолетовый) вешаем нагрузку в виде лампочки 0.3Ах6.3 вольта,
включаем блок в сеть и проверяем выходные напряжения дежурки.
На одном из выходов должно быть +12…30 вольт, на втором — +5 вольт.
Если все в порядке — запаиваем резистор на место.
Проверка микросхемы ШИМ TL494 и аналогичных (КА7500).
Про остальные ШИМ будет написано дополнительно.
1. Включаем блок в сеть. На 12 ноге должно быть порядка 12-30V.
2. Если нет — проверяйте дежурку.
Если есть — проверяем напряжение на 14 ноге — должно быть +5В (+-5%).
3. Если нет — меняем микросхему.
Если есть — проверяем поведение 4 ноги при замыкании PS-ON на землю. До замыкания должно быть порядка 3…5В, после — около 0.4. 
Устанавливаем перемычку с 16 ноги (токовая защита) на землю (если не используется — уже сидит на земле).
Таким образом временно отключаем защиту МС по току.
5. Замыкаем PS-ON на землю и наблюдаем импульсы на 8 и 11 ногах ШИМ и далее на базах ключевых транзисторов.6. Если нет импульсов на 8 или 11 ногах или ШИМ греется – меняем микросхему.
Желательно использовать микросхемы от известных производителей (Texas Instruments, Fairchild Semiconductor и т.д.).7.
Если картинка красивая – ШИМ и каскад раскачки можно считать живым.
8. Если нет импульсов на ключевых транзисторах — проверяем промежуточный каскад (раскачку) – обычно 2 штуки C945 с коллекторами на трансе раскачки, два 1N4148 и емкости 1…10мкф на 50В, диоды в их обвязке, сами ключевые транзисторы, пайку ног силового трансформатора и разделительного конденсатора.Проверка БП под нагрузкой:Измеряем напряжение дежурного источника, нагруженного вначале на лампочку, а потом — током до двух ампер.
Если напряжение дежурки не просаживается — включаем БП, замыкая PS-ON (зеленый) на землю, измеряем напряжения на всех выходах БП и на силовых конденсаторах при 30-50% нагрузке кратковременно. Если все напряжения в допуске, собираем блок в корпус и проверяем БП при полной нагрузке.
Смотрим пульсации. На выходе PG (серый) при нормальной работе блока должно быть от +3,5 до +5В.
Эпилог и рекомендации по доработке:
После ремонта, особенно при жалобах на нестабильную работу, минут 10-15 измеряем напряжения на входных электролитических конденсаторах
(лучше с 40%-ой нагрузкой блока) — часто один «высыхает» или «уплывают» сопротивления выравнивающих резисторов (стоят параллельно конденсаторам )
— вот и глючим… Разброс в сопротивлении выравнивающих резисторов должен быть не более 5%. Емкость конденсаторов должна составлять минимум 90% от номинала. Так же желательно проверить выходные емкости по каналам +3.3В, +5В, +12В на предмет «высыхания» (см. выше), а при возможности и желании усовершенствовать блок питания, заменяйте их на 2200мкф или лучше на 3300мкф и проверенных производителей.
Силовые транзисторы, «склонные» к самоуничтожению (типа D209) меняем на MJE13009 или другие нормальные,
см. тему Мощные транзисторы, применяемые в БП. Подбор и замена..
Выходные диодные сборки по каналам +3.3В, +5В смело меняйте на более мощные(типа STPS4045) с не меньшим допустимым напряжением.
Если в канале +12В вы заметили вместо диодной сборки два спаянных диода — необходимо поменять их на диодную сборку типа MBR20100 (20А 100В).
Если не найдете на сто вольт — не страшно, но ставить необходимо минимум на 80В (MBR2080). Заменить электролиты 1.0 мкфх50В в цепях базы мощных транзисторов на 4.7-10.0 мкфх50В. Можете отрегулировать выходные напряжения на нагрузке.
При отсутствии подстроечного резистора — резисторными делителями, которые установлены от 1й ноги ШИМа к выходам +5В и +12В (после замены трансформатора или диодных сборок ОБЯЗАТЕЛЬНО проверить и выставить выходные напряжения).
Рецепты ремонта от ezhik97:Опишу полную процедуру, как я ремонтирую и проверяю блоки.
1. Собственно ремонт блока — замена всего что погорело и что выявилось обычной прозвонкой
2. Модифицируем дежурку для работы от низкого напряжения. Занимает 2-5 минут.
3. Подпаиваем на вход переменку 30В от разделительного трансформатора.
Это дает нам такие плюсы, как: исключается вероятность что-нибудь спалить дорогое из деталей,
и можно безбоязненно тыкать осциллографом в первичке.
4. Включаем систему и проверяем соответствие напряжение дежурки и отсутствие пульсаций.
Зачем проверять отсутствие пульсаций?
Чтобы удостоверится, что блок будет работать в компе и не будет «глюков».
Занимает 1-2 минуты. Сразу же ОБЯЗАТЕЛЬНО проверяем равенство напряжений на сетевых фильтрующих конденсаторах.
Тоже момент, не все знают. Разница должны быть небольшая.
Скажем, процентов до 5 примерно.
Если больше — есть очень большая вероятность что блок под нагрузкой не запустится, либо будет выключаться во время работы,
либо стартовать с десятого раза и т.п.. Обычно разница или маленькая, или очень большая. Займет 10 секунд.
5. Замыкаем PS_ON на землю (GND).
6. Смотрим осциллографом импульсы на вторичке силового транса. Они должны быть нормальные. Как они должны выглядеть?
Это надо видеть, потому как без нагрузки они не прямоугольные. Здесь сразу же будет видно, если что-то не так.
Если импульсы не нормальные — есть неисправность во вторичных цепях или в первичных.
Если импульсы хорошие — проверяем (для проформы) импульсы на выходах диодных сборок.
Все это занимает 1-2 минуты.Все! Блок 99% запустится и будет отлично работать!
Если в пункте 5 импульсов нет, возникает необходимость поиска неисправности. Но где она? Начинаем «сверху»
1. Все выключаем. Отсосом отпаиваем три ноги переходного транса с холодной стороны.
Далее пальцем берем транс и просто перекашиваем его, подняв холодную сторону над платой, т.е. вытянув ноги из платы.
Горячуюю сторону вообще не трогаем! ВСЕ! 2-3 минуты.
2. Все включаем. Берем проводок. Соединяем накоротко площадку,
где была средняя точка холодной обмотки разделительного транса с одним из крайних выводов этой самой обмотки и на этом же проводе смотрим импульсы,
как я писал выше. И на втором плече так же. 1 минута3. По результатам делаем вывод, где неисправность.
Часто бывает что картинка идеальная, но амплитуда вольт 5-6 всего (должно быть под 15-20). Тогда уже либо транзистор в этом плече дохлый,
либо диод с его коллектора на эммитер. Когда удостоверишься, что импульсы в таком режиме красивые, ровные,
и с большой амплитудой, запаивай переходной транс обратно и посмотри осцилом на крайние ноги еще раз.
Сигналы будут уже не квадратными, но они должны быть идентичными.
Если они не идентичны, а слегка отличаются — это косяк 100%.Может оно и будет работать, только вот надежности это не добавит, а уж про всякие непонятные глюки, могущие вылезти, я промолчу .
Я все время добиваюсь идентичности импульсов. И никакого разброса параметров там ни в чем быть не может
(там же одинаковые плечи раскачки), кроме как в полудохлых C945 или их защитных диодах. Вот сейчас делал блок — всю первичку восстановил,
а вот импульсы на эквиваленте переходного трансформатора слегка отличались амплитудой. На одном плече 10,5В, на другом 9В. Блок работал.
После замены С945 в плече с амплитудой 9В все стало нормально — оба плеча 10,5В. И такое часто бывает,
в основном после пробоя силовых ключей с КЗ на базу.Похоже утечка сильная К-Э у 945 в связи с частичным пробоем (или что там у них получается) кристалла.
Что в совокупности с резистором, включенным последовательно с трансом раскачки, и приводит к снижению амплитуды импульсов.
Если импульсы правильные — ищем косяк с горячей стороны инвертора. Если нет — с холодной, в цепях раскачки.
Если импульсов вообще нет — копаем ШИМ.Информация взята с сайта www.rom.by 

Функция защиты от перегрузки источника питания | FAQ | Сингапур










Перегрузка по току
падение
характеристики
Взаимосвязь
между выходным напряжением
и выходным током
Trend Основные модели
Когда происходит падение напряжения, ток на выходе
также постепенно падает, и выход
возвращается к нормальному уровню
автоматически (автоматическое восстановление)
, когда состояние перегрузки по току сбрасывается.
S82K: 3 Вт, 7,5 Вт, 15 Вт
S8VS: 15 Вт
Инвертированное L
падение напряжения
Когда происходит падение напряжения, выходной ток
остается практически постоянным.
Выход возвращается на нормальный уровень
автоматически (автоматическое восстановление)
, когда состояние перегрузки по току сбрасывается.
S82J: 100 Вт (5 В, 12 В, 15 В),
150 Вт, 300 Вт
S82K: 90 Вт, 100 Вт
S8TS
S8T-DCBU-02
S8VS: 240 Вт
S8VM (12, 15 , 24 В):
50 Вт, 100 Вт, 150 Вт, 300 Вт,
600 Вт, 1500 Вт
Напряжение /
падение тока
Прерывистый режим
Когда происходит падение напряжения, выходной ток
также постепенно падает, а нагрузка
самого источника питания уменьшается на
(автоматическое восстановление) с использованием прерывистого выхода
, когда напряжение
падает до определенного уровня или ниже.
S82J: 10 Вт, 25 Вт
Инвертированный L
Падение напряжения
Прерывистый режим
Когда происходит падение напряжения, выходной ток
остается практически постоянным.
Нагрузка самого источника питания снижается на
(автоматическое восстановление) с использованием прерывистого выхода
, когда напряжение
падает до определенного уровня или ниже.
S8VS: 30 Вт, 60 Вт, 90 Вт,
120 Вт, 180 Вт
S8VM (5 В): 50 Вт, 100 Вт,
150 Вт, 300 Вт, 600 Вт
Постепенный
ток
увеличение /
падение напряжения
Прерывистый режим
Когда происходит падение напряжения, выходной ток
увеличивается по мере падения напряжения,
поддерживает постоянную мощность, а нагрузка самого источника питания
уменьшается на
(автоматическое восстановление ) с использованием прерывистого выхода
, когда напряжение
падает до определенного уровня или ниже.
S82J: 50 Вт, 100 Вт (24 В)
S82K: 30 Вт, 50 Вт
S8VM: 15 Вт, 30 Вт
Инвертированный L
падение напряжения
Отключение
Когда напряжение происходит падение, выходной ток
остается практически постоянным. Если, однако,
состояние перегрузки по току
продолжается дольше установленного времени,
выход будет прерван, и питание
необходимо будет снова включить.
для восстановления.
S82J: 600 Вт

Анализ цепи — Выход импульсного источника питания обнуляется при подключении нагрузки

Думаю, с этого места мне следует начать свой собственный ответ.

РЕДАКТИРОВАТЬ: Я должен втиснуть дальнейшие дебаты в текст. Надеюсь, это не слишком запутано.

Прежде всего, мое уважение к построению такой схемы и за то, что вы изо всех сил старались ее диагностировать. Поднимите вверх за осциллограф — даже если у него не очень высокие характеристики. Вы узнаете много «ноу-хау», имея дело с оборудованием с более низкими характеристиками, и если вы случайно что-то взорвете, это не разрушит ваш бюджет на долгие годы.

По моему очень ограниченному опыту, Fluke ScopeMeter — это устройство, которое в качестве осциллографа для ВЧ, вероятно, доставляет больше проблем, чем… остальное вы знаете. Но, говоря о пробниках, сами по себе пробники могут иметь достаточную полосу пропускания для вашего осциллографа и для решения возникшей проблемы, и тем лучше, если они рассчитаны на выдержку 1 кВ. Если бы они поставлялись с прицелом, я бы склонен был поверить в эту спецификацию. У меня есть старый датчик 1: 1000, который, вероятно, работает до нескольких кВ, у него даже нет наземного «поводка» (крокодил) — я унаследовал этот датчик от старого техника по ремонту ЭЛТ-телевизоров, который вышел на пенсию несколько лет назад. тому назад.Не уверен, как выглядят ваши пробники, но если они выдерживают 1 кВ, с ними, вероятно, все в порядке. Остается один вопрос: каков их коэффициент делителя? Осциллограф, вероятно, будет принимать примерно 5 Вольт на квадрат вертикальной сетки (= «на деление»), поэтому пробника с делителем 1:10, возможно, недостаточно. Во всяком случае, вы, наверное, уже знаете 🙂

В схеме все, что находится на вторичной стороне, то есть после Y-конденсатора C7, вероятно, безопасно для работы с малосигнальной электроникой, включая выход вторичной обмотки вашего трафо и следующие выпрямитель и конденсаторы.Вы можете заземлить вторичный GND на PE, чтобы иметь безопасный общий потенциал для запуска.

Что касается первичной стороны, то она кусается. Ваш первичный конденсатор, вероятно, не очень большой, но даже 10-20 мкФ или около того могут дать неплохой удар при зарядке, не говоря уже о том, когда под напряжением сеть и конденсатор непрерывно заряжается выпрямителем. А вы тем временем уже уточнили, что у вас 150 мкФ. Остерегаться.

Если ваш осциллограф не имеет изолированного блока питания (и не питается от батареи)…. теоретически вы можете использовать внешний изолирующий трансформатор для входа сети, но вы, вероятно, также захотите оставить обращенный к стене терминал PE отдельно от фактического PE, чтобы шасси (и, что наиболее важно, вход) вашего осциллографа оставалось в плавающем состоянии вместе с «выпрямленной сетью» первичной стороны вашего SMPS … Представьте, что на корпус вашего осциллографа подается 230 В переменного тока. Лучше соорудите вокруг своего прицела акриловую коробку, чтобы случайно не попытаться с ней работать … это все очень опасная территория.При измерении на первичной обмотке блока питания вы должны быть очень уверены в том, что делаете, с точки зрения заземления сигнала, проводки защитного заземления и общей безопасности. Я, наверное, не могу рекомендовать это новичку. Самое главное, вы, вероятно, должны быть обученным техническим специалистом в области EE — не уверен, что вы один 🙂

EDIT: здесь я предполагал, что вы будете использовать изолирующий трансформатор для питания осциллографа. У меня есть партнер, который использует это при измерении срабатывания ограничителей перенапряжения на 5 кА при 5 кВ.Очевидно, вы могли бы перевернуть столы и использовать изолирующий трансформатор для питания первичной обмотки вашего прототипа БП и прикрепить его «внутреннюю общую первичную обмотку / возврат после Гретца» к некоторому внешнему значимому потенциалу GND. (Обратите внимание, что это никоим образом не уменьшает опасности первичного конденсатора, это просто позволит вам проводить измерения в цепи с большой осторожностью.)

Другой способ сделать это, я имею в виду, чтобы «общий / возвратный узел первичной стороны после Гретца» находился на уровне, близком к земле, — это выпотрошить Гретца и оставить только один диод внутри, от напряжения до клеммы + конденсатора. .И соедините нейтраль сети = вернитесь к узлу «внутреннее заземление первичного постоянного тока» на вашей схеме. После этого вы могли бы попытаться измерить ШИМ-контроллер и шунт R17 с помощью осциллографа относительно потенциала PE. Однако обратите внимание, что нейтральный = внутренний возврат в силу своей функции будет плавать / колебаться на несколько вольт вокруг идеального защитного заземления от сетевой розетки. Это колебание является функцией токов 50 Гц и токов сбоев сетевого выпрямителя, текущих через обратную / нейтраль к вашей центральной земле.

Чтобы продолжить эту идею, вы также можете рискнуть связать клемму PE вашего осциллографа с каким-либо местом на нейтральном / внутреннем возврате вашей тестируемой схемы (заземления входного сигнала осциллографа, вероятно, связаны с PE). Обратите внимание, что это технически нарушение стандартов электробезопасности, но это позволит вам измерить чистое напряжение относительно «внутреннего первичного общего потенциала заземления» (при этом колебание нейтрали и заземления не имеет значения). Например, сигнал на токоизмерительном шунте R17.Решение с заземлением может оказаться немного сложной практической головной болью — я имею в виду нейтраль сети по сравнению с PE по сравнению с опорным заземлением сигнала на вашем осциллографе в отношении «первичного внутреннего общего возврата / узла GND», который вам нужно использовать. в качестве эталона для измерений слабого сигнала …

Заметьте в схеме «Типичное применение» (в ответе Энди Ака), что символ заземления первичной стороны, появляющийся на всей схеме, на самом деле НЕ равен защитному заземлению! Скорее, это «общий возвратный потенциал первичной части после выпрямителя Гретца» = он будет понижаться до -350 В или около того в течение каждого периода синусоиды в сети.За мостом Гретца. Обратите внимание, что это применимо, например, до R17. Напротив, плоский GND вторичной стороны может быть равен PE, если вы их соедините. Или вы можете оставить этот вторичный GND плавающим, но тогда он будет подвержен утечке Y-cap.

Итак … если вы отважитесь провести некоторые умеренно опасные измерения на первичной обмотке (с упрощенным выпрямителем и нейтралью сети, прикрепленной болтами к «источнику» полевого транзистора), вы можете оценить некоторые примеры того, как выглядит насыщение индуктора. Ссылка ведет на Google Images.На первичной стороне вы можете увидеть, как ток растет с некоторой скоростью (dI / dt). Когда происходит насыщение, эта скорость роста взлетает до небес. Этот перегиб сигнализирует о том, что с катушки индуктивности достаточно. Это то, что вы можете наблюдать на шунте R17.

Может быть трудно заметить, пытается ли ШИМ-контроллер что-то, а затем отключается. Цифровой осциллограф был бы полезен для этого измерения = позволяя вам зафиксировать один «запуск» (событие запуска) и затем проверить его.

Я вижу, что вы, вероятно, довольно внимательно следили за заявкой Infineon — это хорошо.По крайней мере, диоды используются дословно, точные типы которых указаны в приложении — прекрасно. Что наиболее важно, я вижу, что ваш выпрямитель на вторичной обмотке — это мощный, быстро переключающийся Schottky. Рад слышать. Использование 1N4148 для D2 немного подняло мою бровь, я знаю эту модель как малосигнальный диод общего назначения … Я имею в виду «сигнальный» диод, а не выпрямитель. Тем не менее, если его допустимый ток не превышен, он, вероятно, отлично работает как маломощный быстрый выпрямитель.(Я сам бы потянулся за маломощным быстродействующим выпрямителем Schottky с номиналом, может быть, 1 А. См. Также, что Рохат Килич думает об этой шине питания микросхемы ШИМ.) Обратите внимание, что D2 служит выпрямителем для низковольтной первичной боковая шина питания, питающая малосигнальные части микросхемы ШИМ. Только встроенный МОП-транзистор подвергается полному первичному напряжению.

Вы уже разъяснили, что ваша фактическая схема и печатная плата на самом деле содержат правильный первичный элемент — 150 мкФ серии KXG от Nippon Chemicon, самой известной марки конденсаторов SMPS.Это хорошо 🙂

На печатной плате я бы рискнул предположить, что этот главный первичный элемент должен быть как можно ближе к полевому МОП-транзистору и трансформатору, чтобы ограничить область контура, в которой протекают самые большие токи переменного тока. Представьте себе «вакуумирование» внутри сильноточной петли между первичной обмоткой trafo, силовым полевым МОП-транзистором (внутри микросхемы PWM) и конденсатором емкостью 150 мкФ. Это общее практическое правило при проектировании SMPS. Выровняйте дорожки на печатной плате ближе друг к другу. Я бы попытался оставить другие устройства вне этого цикла, в том числе малосигнальные выводы пакета DIP8 микросхемы ШИМ.На мой взгляд, компоновка вашей печатной платы не очень старается минимизировать площадь этого контура с высоким ВЧ-током, но я должен признать, что ваша компоновка не сильно отличается от примера в таблице данных ICE2A265: — / Также в таблице данных Обратите внимание на «звездообразное заземление» (узел «возврата первичной стороны») с центром на минусовой клемме этого большого 150 мкФ надкрылья. Мне кажется, что вы пытались в некоторой степени следовать этой топологии в своем собственном дизайне … В техническом описании конкретно упоминаются некоторые рекомендации по размещению «конденсатора плавного пуска» (роль которого, вероятно, заключается в синхронизации небольшого сигнала) — что любопытно для меня, в нем не упоминается область петли.Возможно я излишне рьяный 🙂

Все еще глядя на вашу печатную плату, этот красный «забор» вокруг почти всей печатной платы … действительно ли это заземленная поверхность на уровне B = стороне компонентов? Если это так, то с каким потенциалом это связано? ЧП? «первичный внутренний общий узел после Гретца»? Или выходной низковольтный возвратный терминал? Я хочу сказать, что если это действительно самолет GND, мне это кажется пугающим. Я бы определенно предложил чтобы разделить эту плоскость на две частичные плоскости, разделенные большим зазором, проходящим под днищем ВЧ трансформатора.И на самом деле мне интересно, есть ли смысл иметь грунтовой самолет на первичной стороне. Если он у вас есть, вам, вероятно, следует держать грунтовку на безопасном расстоянии (это называется утечкой утечки?) От всех контактов и следов сетевого уровня … И мне интересно, паразитная способность сигнальных дорожек к такая плоскость GND могла сбить с толку ШИМ-контроллер. Я видел такие эффекты на некоторых своих печатных платах, где я прототипировал высокоимпедансную схему на макетной плате, а затем припаял следующий прототип на специальной печатной плате, аккуратно проложенной и заземленной…

РЕДАКТИРОВАТЬ: хорошо, вы объяснили, что это за земля. Человек, ты все время напоминаешь мне о моем прошлом. Это как наблюдать за собой 20 лет назад — и я особо не продвинулся дальше 🙂 Уважаю за гравировку этой доски самостоятельно. Не отчаивайтесь, даже если вам в конечном итоге придется переделывать печатную плату, это техническое упражнение чрезвычайно полезно для вашего роста, и неважно, 20 вам или 60. Что касается технической точки зрения: я определенно предлагаю разделение этот заземляющий слой пополам. Полагаю, на вашей доске 1 — 1.Толщиной 6 мм, которая должна пережить две царапины острым ножом и очистить медь между ними. Я бы сделал зазор шириной не менее 3-5 мм. Спасибо за упоминание имен ваших первичных / вторичных общих / наземных узлов — это очень разумно и убеждает меня, что вы понимаете схему. Итак: теперь, когда у вас есть разделенная медная плоскость, я бы заземлил каждую половину на соответствующий оптимальный узел заземления. Это может немного стабилизировать ситуацию. Меня по-прежнему беспокоит недостаточная утечка на первичной стороне, но если до сих пор это работало, то с таким же успехом можно и дальше.Пока вы держите мост Гретца на схеме, очень бойтесь случайно прикоснуться к этой медной плоскости, которая теперь заземлена на первичной стороне 🙂 И я предлагаю вам не работать с этой схемой вживую, когда уже поздно -А ты устал и одинок. Когда я протыкаю что-то, что связано с голой сетью на своем рабочем месте, я обычно держу в комнате друга, чтобы следить за мной.

Давайте рассмотрим другую тему, о конденсаторах вторичной стороны. Конденсаторы для использования в SMPS часто называют категорией с низким ESR.ESR означает «эквивалентное последовательное сопротивление». AFAICT, ваши алюминиевые надкрылья от Würth не такие. Они могут выжить в цепи, особенно без практической нагрузки, но при номинальной нагрузке они могут довольно быстро выйти из строя: полностью «исчезнуть» из цепи, короткое замыкание или что-то в этом роде. Если этот вердикт слишком суров с моей стороны, прошу прощения, мне, возможно, не дали надлежащую таблицу данных. Обратите внимание, что серия KZE от Nippon ChemiCon, упомянутая в приложении Infineon, является фирменной японской моделью с низким ESR.Более старый и «просто старый мокрый алюминиевый надкрылье», но посмотрите на допустимую пульсацию тока. Для 470 мкФ при 35 В, правильно ли я читаю 1,8 А при 100 кГц? и СОЭ составляет 23 миллиОм. В техническом описании Würth эти числа даже не упоминаются, допустимый ток пульсаций может быть примерно 1 А на частоте 100 кГц, но ESR может быть больше примерно 100-200 миллиОм, и конденсатор, вероятно, не предназначен для того, чтобы выдерживать удары вторичной обмотки SMPS. сторона.

В вашем приложении говорится о «резервном сервере». Не уверены, каким должно быть его номинальное выходное напряжение — может быть, 5В? Для этого номинальное напряжение 35 В является большим перебором.В старые времена влажных алюминиевых надкрылий существовало практическое правило, согласно которому использование конденсаторов, рассчитанных на удвоенное фактическое рабочее напряжение, продлевало срок службы крышек. Даже тогда еще большее номинальное напряжение было нонсенсом. Теперь, когда речь идет о твердом полимере, я бы выбрал «следующее более высокое» номинальное напряжение. Для шины 5 В я бы использовал полимерные конденсаторы номиналом 6,3 В. Кроме того, вы можете купить конденсаторы с ESR 7-12 миллиОм и допустимым током пульсаций 3-6 ампер. Фактически, вместо трех старых Al elyts серии KZE, вы можете использовать один современный полимерный колпачок — хотя я стараюсь придерживаться исходного количества во время ремонта, что делает полимеры бессмертными в цепи.

Не уверен, где вы находитесь на земном шаре, поэтому позвольте мне предложить соответствующие категории продуктов с Mouser в США и TME в Польше / ЕС. Обратите внимание, что оптимальное значение для ESR и цены составляет около 470 мкФ / 6,3 В для форм-фактора THT (радиальные провода). Или просто извлеките что-нибудь из мертвой материнской платы ПК или карты VGA. Вы, вероятно, найдете что-то с напряжением 16 вольт, но вряд ли что-нибудь на 6,3. Я случайно написал веб-страницу, посвященную конденсаторам для использования в SMPS, только не на английском языке… просто посмотрите, может быть, список производителей 🙂 Например, мне нравятся дешевые и качественные полимеры X-CON от Man Yue (Китай), но очевидно, что оригинальные японские бренды — это в первую очередь беспроигрышный вариант. Для нетребовательного ремонта / самостоятельного использования я не побоюсь порекомендовать некоторые тайваньские бренды, такие как Elite, Lelon, APAC и т. Д. (Некоторые производители материнских плат, похоже, используют APAC повсеместно). Если у вас есть их источник, дайте им попробовать.

Итак, это мой совет для вторичной стороны.Попробуйте использовать твердый полимер на 6,3 В, около 470 мкФ, как правило, является самым низким ESR. Одной штуки тоже может хватить, но три будут сексуальнее 🙂

РЕДАКТИРОВАТЬ: в более позднем обновлении вы уточнили, что ваша основная крышка — это серия KXG от Nippon Chemicon, 150 мкФ. Вы, наверное, не смогли бы выбрать лучшую модель. Но пока я сохраню следующий абзац в своем ответе, так как он может прояснить ситуацию для других людей, читающих это позже.

Для первичной стороны вам нужно выбрать Aluminium Elyt — потому что твердый полимер не достигает такого высокого уровня с точки зрения номинального уровня напряжения.Технология просто не масштабируется так высоко. Кроме того, что для меня любопытно, никакие конденсаторы на 400-500 В номинально не рассчитаны на низкое ESR. Некоторые из них используют SMPS, упомянутые в таблицах данных. Причины, вероятно, состоят в том, что 1) на первичной стороне dI / dt не такой резкий, потому что именно там катушка индуктивности / трансформатор «раскручивается», и, во-вторых, благодаря высокому напряжению, действительно необходимые токи не являются проблема, по сравнению с тем, на что на самом деле способны соответствующие конденсаторы = не стоит заморачиваться? Тем не менее, если вы будете осторожны, вы можете обнаружить линейки конденсаторов, которые лучше подходят для этой позиции.В общем, выбирайте конденсаторы, рассчитанные на диапазон температур 105– ° C, и вы можете найти модели, рассчитанные на срок службы 5000–10000 часов при этой температуре. 2000 часов при 105 C — вполне нормальные характеристики. На самом деле ваш конденсатор, вероятно, будет иметь гораздо более низкую температуру, а срок службы удваивается с каждым понижением на 10 ° C. Чтобы упомянуть конкретные семейства моделей для первичной позиции SMPS, мне очень нравится серия Nichicon CS, за которой на некотором расстоянии следует Nichicon CY. Для более низких уровней напряжения, я думаю, до 63 вольт, я хотел бы упомянуть серию Panasonic FR = алюминиевый край, но с ESR и Ir, атакующими твердый полимер (особенно при более высоких напряжениях, где Solid Poly не имеет представления или низкий емкость).

РЕДАКТИРОВАТЬ: проблема уже решена, но для тех, кто позже обратится к этой теме, я хотел бы добавить еще одну главу.

В моей повседневной практике одно из устройств, которые мы продаем, содержит модуль блока питания, который, по всей видимости, очень похож на то, что построил Роб. Надеюсь, производитель модуля SMPS, о котором я собираюсь упомянуть, не расстроится, если я опубликую несколько фотографий. Я размазал логотип производителя … не уверен, что это поможет, но поехали.Я имею в виду, я должен сказать, что я почти исключительно хваляю эти модули — после того, как было продано около сотни штук, у меня было несколько штук, возвращенных в мою сервисную мастерскую, начиная, может быть, через 10 лет круглосуточного обслуживания в устройстве, где термики можно было бы улучшить (окружающая температура блока питания не совсем минусовая). Да, модуль блока питания производится уже более десяти лет. Тайваньский производитель блоков питания входит в число ведущих мировых брендов.

Вот подборка фотографий:

Посередине — новый оригинальный модуль с оригинальными конденсаторами.В течение многих лет я видел Rubycon или NCC. Обратите внимание, что конденсаторы вторичной стороны являются влажными.

Тот, что слева, отремонтирован мной.

Справа вы можете увидеть модуль, у которого удалены первичный надкрылья и трансформатор — я сделал снимок против солнца, чтобы выявить основные следы печатной платы и пробелы в изоляции. Обратите внимание, что нет заземляющей плоскости. Печатная плата двусторонняя, и обе стороны используются для отдельных дорожек.

Некоторые из модулей, которые были возвращены после многих лет службы, можно было отремонтировать, заменив конденсаторы.Я использовал модель немного большего размера от Nichicon (Япония) на первичной стороне (поскольку она была мне доступна) и несколько полимеров серии X-CON ULR от Man Yue (Китай) для вторичной стороны. Обратите внимание, что я также поместил полимер для низковольтного источника питания PWM на первичной стороне — если этот конденсатор выходит из строя, блок питания имеет тенденцию работать без нагрузки, но выходит из строя при некоторой нагрузке — также известный как «синдром 47 микро» в широкий выбор моделей и мощностей блоков питания. Примерно две штуки не отремонтировали заменой конденсатора.При более внимательном рассмотрении в одном случае показалось, что в трансформаторе произошло короткое замыкание между витками обмотки, а в другом случае встроенный полевой транзистор ШИМ-микросхемы постепенно вышел из строя. Хотя может иметь смысл заменить конденсаторы, совершенно бессмысленно пытаться заменить трансформатор или микросхему. Весь модуль такой дешевый.

Модуль, похоже, основан на микросхеме под названием FSDH0265RN от Fairchild. Внешне он похож на конкурирующий ICE2A265 от Infineon, но не совсем такой — распиновка другая, и измерение тока должно быть внутренним, если оно есть.Опять же, общий форм-фактор, уровень мощности и уровень интеграции кажутся почти такими же. Поэтому я считаю, что расположение дорожек на печатной плате применимо аналогичным образом — особенно «силовая цепь». Ниже приведен снимок экрана с таблицей данных Fairchild по разводке печатной платы:

Очевидно, что аналог Infineon нуждается в большем количестве внешних компонентов, что затрудняет поддержание сверхчистой компоновки.

Возможно, наиболее важным моментом здесь может быть то, что создание одиночного SMPS с нуля в наши дни практически не имеет смысла, кроме как для целей исследования.На полке доступен широкий спектр модулей SMPS, и некоторые из них имеют приемлемое качество, но не очень дороги. Если «сделай сам» был мотивирован каким-то нестандартным уровнем напряжения (вне стандартной «сети»), то возможный ответ заключается в том, что семейства продуктов, доступные «с полки», как правило, имеют подстроечный резистор рядом с выходными клеммными колодками — и если это так. недостаточно, все еще есть возможность найти делитель напряжения обратной связи на печатной плате и взломать его — вероятно, начиная с модели с номинально более высоким напряжением питания и доработав его.

Замыкание источника питания постоянного тока

Судя по предоставленной информации, вероятно, но нельзя сказать наверняка, что он защищен от короткого замыкания.
Сайт, указанный ниже, говорит, что это так.
Caveat Emptor (и загляните внутрь — см. Ниже)

Весьма вероятно, исходя из стоимости и общепринятой практики, что в нем используется версия регулятора LM317 с защитой от короткого замыкания. Ваше выходное напряжение питания имеет нижний предел 1,5 В, тогда как LM317 допускает выходное напряжение 1,25 В и выше.(Учитывая выход аналогового измерителя и минимальное значение выходного сигнала 1,3 В для наихудшего случая, заявленное минимальное значение 1,5 В соответствует LM317). Есть в наличии стабилизатор LM350 «старший брат», но сила тока выше 2А.

SO — если вам удобно заглядывать внутрь источника питания * и виден LM317, то источник питания защищен от короткого замыкания. * — Вероятно, 4 винта под корпусом — в этом корпусе они, вероятно, находятся рядом с резиновыми ножками и, возможно, также удерживают ножки.

Блок питания рекламируется на некоторых сайтах как подходящий для использования с татуировочными машинами — вероятно, потому, что напряжение и ток соответствуют используемым двигателям. То, как они используются, вероятно, управляет питанием в ограниченном по току режиме, что также предполагает безопасное короткое замыкание.

Если он не содержит LM317, он МОЖЕТ быть защищенным от короткого замыкания — и на сайте ниже указано, что это так.

На этом сайте говорится, что блок питания HY152A защищен от короткого замыкания. Они , претензии

  • Защита: защита от обратной полярности, защита от короткого замыкания.

Нагрузка / напряжение / ток:

Совершенно очевидно (надеюсь), если источник питания ограничивает ток до 2 А, когда нагрузка становится чрезмерной, то подаваемое напряжение ДОЛЖНО упасть. Если этого не сделать, это нарушит закон Ома и по совпадению нарушит большинство законов физики. т.е.

Для данного тока, если вы уменьшите R (= более тяжелая нагрузка), тогда напряжение должно уменьшиться пропорционально. Если вы увеличите нагрузку (уменьшите R), а напряжение и ток останутся прежними, Скотти расстроится («Да, нельзя нарушать законы физики!»)

Если вам нужно ограничение тока, а ваша нагрузка по какой-то причине не может выдерживать низкое напряжение без повреждений, тогда вам понадобится аварийное отключение или полное отключение, независимо от того, насколько хорошо ваше питание.


LM317: LM317 сначала ограничивает естественный ток, просто «выдыхая пар» — ток не превышает того значения, которое он может пропускать.Тогда в большинстве случаев падение напряжения на регуляторе x сила тока вызовет нагрев и повышение температуры. Если радиатор не может ограничить повышение температуры до приемлемого уровня, IC имеет внутреннюю схему, которая дополнительно ограничивает ток, так что ток будет падать, чтобы поддерживать температуру на приемлемом уровне. Обычно это приводит к току намного ниже 2А, ​​пока короткое замыкание не будет устранено.

Основы самозащиты источников питания — Power Electronic Tips

Источники питания переменного / постоянного и постоянного / постоянного тока обычно относительно надежны при нормальной работе.Тем не менее, в большинство этих устройств встроены некоторые защитные функции, которые гарантируют, что они не «самоуничтожатся» или не повредят связанные схемы — в первую очередь их нагрузки — в случае отказа или режима работы вне спецификации.

(примечание: строго говоря, источник питания — это блок переменного / постоянного или постоянного / постоянного тока, но последние также называются преобразователями или регуляторами. Однако использование, связанное с этими терминами, часто бывает небрежным, особенно в повседневной разговор.)

Разве предохранитель не все, что нужно для защиты источника питания и нагрузки?

Да и нет.Предохранитель защищает источник питания в случае короткого замыкания в цепи нагрузки или в случае возникновения слишком большого тока. Плавкий предохранитель может не понадобиться, так как многие источники питания «самоограничиваются» в том смысле, что они могут подавать только до определенного количества тока. Открывающийся предохранитель необходимо будет заменить вручную, и это проблема для многих приложений (но преимущество для других). Кроме того, предохранитель не может защитить от других типов отказов или неправильной работы, кроме слишком большого тока на выходе.

Что такое блокировка при пониженном напряжении (UVLO)?

UVLO гарантирует, что преобразователь постоянного тока в постоянный не будет пытаться работать, когда входное напряжение, которое он видит, слишком низкое, Рисунок 1 .Это делается по двум причинам: во-первых, схема внутри преобразователя может работать со сбоями или действовать неопределенным образом, если входное напряжение постоянного тока слишком низкое, и некоторые компоненты более высокой мощности могут фактически быть повреждены; во-вторых, он не позволяет преобразователю потреблять первичную мощность, даже если он не может обеспечить допустимую выходную мощность. Этот последний аспект означает, что такой источник, как батарея, которая подавала недостаточное напряжение на преобразователь, все еще может быть разряжена преобразователем. Как следствие, время перезарядки батареи будет больше, особенно если она от источника с ограниченным энергопотреблением, такого как сбор энергии.

Рис. 1. Блок питания не «мгновенно» выходит на полную мощность, а вместо этого имеет переходные диапазоны включения и выключения и время; UVLO гарантирует, что источник питания не пытается обеспечить полную выходную мощность, когда его входное напряжение ниже минимума, необходимого для правильной работы. (Источник: Texas Instruments)

Для реализации UVLO небольшая схема сравнения с низким энергопотреблением внутри преобразователя сравнивает входное напряжение с предварительно установленным порогом и переводит источник питания в режим покоя до тех пор, пока пороговое значение не будет пересечено.Чтобы гарантировать, что UVLO не колеблется около порогового значения, с ним используется небольшой гистерезис. Так, например, питание отключится, когда входное напряжение упадет ниже 5,0 В, но не включится, пока возрастающее напряжение не достигнет 5,5 В.

Что такое защита от перенапряжения (OVP)?

Хотя источник питания или преобразователь обычно предназначены для выработки фиксированного выходного напряжения постоянного тока, внутренний сбой в источнике питания может вызвать повышение этого напряжения и, возможно, повредить нагрузку, к которой подключен источник питания.Этот отказ может быть вызван коротким замыканием в жгуте проводов, отказом пассивного компонента или отказом активного устройства, такого как полевой МОП-транзистор. Независимо от источника, это, конечно, нежелательно само по себе, но особенно если оно также может повредить нагрузку. OVP — это функция, которая контролирует выход по сравнению с внутренним опорным сигналом и закорачивает выход, если напряжение поднимается выше порогового значения.

Контур, который контролирует и отключает, называется «лом», якобы названный так потому, что он имеет тот же эффект, что и металлический лом на выходе.Ключ к правильно спроектированному лому состоит в том, что он прост и функционирует независимо от самого источника питания, Рисунок 2 .

Рис.2: Эта схема лома работает от источника питания 8 В и имеет защиту от перенапряжения, установленную на 9,1 В (это можно изменить, используя другой стабилитрон ZD1 на диод с предпочтительным напряжением; при 9,1 В стабилитрон начинает работать. проводит и вызывает триггерный сигнал для включения тиристора Q1 (обратите внимание, что предохранитель предназначен для защиты от чрезмерного тока).

Есть два типа ломов: первый, в котором лом после срабатывания сбрасывается, только если я отключил питание; и тот, где он сам сбросится после устранения неисправности выходного напряжения. Второй полезен, когда состояние, при котором сработал лом, вызвано каким-то переходным процессом, а не серьезным отказом в питании. В то время как большинство расходных материалов теперь поставляется со встроенным ломом, многие поставщики предлагают небольшую отдельную цепь лома, которую при необходимости можно добавить к существующей поставке.

Что такое тепловая защита от перегрузки?

По своей природе любой блок питания выделяет тепло, потому что его КПД менее 100%. Даже эффективный блок питания создает потенциально проблемную сумму: блок питания мощностью 100 Вт, который эффективен на 90%, все же рассеивает 10 Вт, что очень хорошо для нагрева корпуса. По этой причине источник питания должен быть спроектирован с достаточным активным охлаждением (например, вентилятором) или пассивным охлаждением (достигается за счет конвекционного и кондуктивного охлаждения).

Но что происходит, если вентилятор выходит из строя, или блокируется поток воздуха, или в шкаф попадает другой источник тепла? Блок питания может превышать допустимую температуру, что значительно сокращает срок его службы и может даже вызвать немедленную неисправность. Решением является цепь в источнике питания, которая измеряет температуру и переводит источник питания в режим покоя, если она превышает заданный предел. Как и в случае с OVP, некоторые тепловые отсечки автоматически позволяют возобновить работу источника питания при падении температуры, а другие — нет.Какой подход «лучше» зависит от характера приложения и цикла использования.

Это основные механизмы внутренней защиты в источнике питания или преобразователе. Также существуют «защиты» от внешних событий и сбоев, которые обычно предоставляются вне источника питания или в качестве дополнительных устройств.

Ссылка:

Texas Instruments SLVA769, «Понимание блокировки при пониженном напряжении в устройствах питания дисплея»

Меры предосторожности для источников питания Меры предосторожности для источников питания

Пример для серии S8FS-G Серия
Работа

Два источника питания могут быть подключены последовательно.

Примечание 1. Диод подключается, как показано на рисунке. Если нагрузка закорочена, внутри источника питания будет генерироваться обратное напряжение. В этом случае источник питания может выйти из строя или выйти из строя. Всегда подключайте диод, как показано на рисунке. Выберите диод со следующими характеристиками.

Примечание 2. Хотя блоки питания с различными характеристиками могут быть подключены последовательно, ток, протекающий через последовательно подключенные, ток, протекающий через нагрузку, не должен превышать меньший номинальный выходной ток.

<Создание положительных / отрицательных выходов>

Выходы — это беспотенциальные выходы (т. Е. Первичные и вторичные цепи разделены). Таким образом, вы можете создавать положительные / отрицательные выходы, используя два источника питания. Вы можете сделать положительный / отрицательный выход с любой из моделей. Если вы используете положительный / отрицательный выходы, подключите два источника питания одной модели, как показано ниже. Вы можете комбинировать модели с разной выходной мощностью и выходным напряжением.Однако в качестве тока нагрузки следует использовать меньший из двух номинальных выходных токов.

В зависимости от модели, внутренние цепи могут быть повреждены из-за сбоя при запуске при включении питания, если такие нагрузки, как серводвигатель или операционный усилитель, могут работать последовательно.
Поэтому подключите байпасные диоды (D1, D2), как показано на следующем рисунке. Если в списке моделей, поддерживающих последовательное соединение выходов, указано, что внешний диод не требуется, внешний диод также не требуется для положительных / отрицательных выходов.

Используйте следующую информацию в качестве руководства для определения типа диода, диалектической силы и силы тока.

Основы управления питанием: Характеристики источника питания

Характеристики источника питания влияют на конструкцию подсистемы управления питанием. Двумя основными характеристиками являются эффективность и производительность в указанном диапазоне температур, при котором может потребоваться охлаждение. Кроме того, существуют важные характеристики, которые защищают источник питания и его нагрузку от повреждений, таких как перегрузка по току, перегрев, перенапряжение и т. Д.Затем есть рабочие параметры, которые описывают характеристики источника питания, такие как дрейф, динамический отклик, линейное регулирование, регулирование нагрузки и т. Д.

КПД определяет тепловые и электрические потери в системе, а также количество необходимого охлаждения. Кроме того, это влияет на физические размеры корпуса как источника питания, так и конечной конечной системы. Кроме того, это влияет на рабочие температуры компонентов системы и, как следствие, на надежность системы. Эти факторы влияют на определение общей стоимости системы, как оборудования, так и поддержки на месте.Листы данных источника питания обычно включают график зависимости КПД от выходного тока, как показано на Рис. 2-1 . Этот график показывает, что эффективность зависит от приложенного напряжения источника питания, а также от выходного тока нагрузки.

Эффективность, надежность и рабочая температура взаимосвязаны. В технических паспортах источников питания обычно указываются конкретные требования к воздушному потоку и радиатору. Например, рабочая температура окружающей среды влияет на выходной ток нагрузки, с которым источник питания может надежно справиться.Кривые снижения номинальных характеристик источника питания (, рис. 2-2, ) показывают его надежный рабочий ток в зависимости от температуры. Рисунок 2-2. показывает, какой ток может выдерживать источник питания, если он работает с естественной конвекцией, или 200 LFM и 400 LFM.

Защита поставок

Есть несколько других характеристик, которые влияют на работу источника питания. Среди них есть те, которые используются для защиты источника питания, которые перечислены ниже.

Перегрузка по току: Режим отказа, вызванный выходным током нагрузки, превышающим указанный.Он ограничен максимальной допустимой токовой нагрузкой источника питания и контролируется внутренними схемами защиты. В некоторых случаях это также может повредить блок питания. Короткие замыкания между выходом источника питания и землей могут создавать токи в системе, которые ограничиваются только максимальной допустимой токовой нагрузкой и внутренним сопротивлением источника питания. Без ограничения этот высокий ток может вызвать перегрев и повредить источник питания, а также нагрузку и ее межсоединения (дорожки на плате, кабели).Поэтому большинство источников питания должны иметь ограничение по току (защиту от перегрузки по току), которое срабатывает, если выходной ток превышает указанный максимум.

Перегрев: Не допускайте превышения температуры, превышающей указанное значение источника питания, иначе это может вызвать сбой источника питания. Чрезмерная рабочая температура может повредить источник питания и подключенные к нему цепи. Поэтому во многих источниках питания используется датчик температуры и связанные с ним цепи для отключения источника питания, если его рабочая температура превышает определенное значение.В частности, полупроводники, используемые в источниках питания, уязвимы к температурам, превышающим указанные пределы. Многие источники питания включают защиту от перегрева, которая отключает подачу, если температура превышает указанный предел.

Перенапряжение: Этот режим отказа возникает, если выходное напряжение превышает указанное значение постоянного тока, что может вызвать чрезмерное постоянное напряжение, которое повреждает цепи нагрузки. Обычно нагрузки электронных систем могут выдерживать перенапряжение до 20% без каких-либо необратимых повреждений.Если это необходимо, выберите источник, который минимизирует этот риск. Многие источники питания включают защиту от перенапряжения, которая отключает питание, если выходное напряжение превышает заданное значение. Другой подход — ломовой стабилитрон, который проводит достаточный ток на пороге перенапряжения, чтобы активировать ограничение тока источника питания и выключиться.

Мягкий пуск: Ограничение пускового тока может потребоваться при первом включении питания или при «горячей» замене новых плат.Обычно это достигается с помощью схемы плавного пуска, которая замедляет начальный рост тока, а затем обеспечивает нормальную работу. Если не лечить, пусковой ток может вызвать высокий пиковый зарядный ток, который влияет на выходное напряжение. Если это важное соображение, выберите источник питания с этой функцией.

Блокировка при пониженном напряжении: Известная как UVLO, она включает питание, когда оно достигает достаточно высокого входного напряжения, и отключает питание, если входное напряжение падает ниже определенного значения.Эта функция используется для источников питания, работающих как от электросети, так и от батареи. При работе от батарейного источника питания UVLO отключает источник питания (а также систему), если батарея разряжается настолько, что снижает входное напряжение источника питания до слишком низкого уровня для обеспечения надежной работы.

Коррекция коэффициента мощности (PFC): Применимо только к источникам питания переменного и постоянного тока. Соотношение между напряжением и током линии переменного тока называется коэффициентом мощности. Для чисто резистивной нагрузки на линии питания напряжение и ток совпадают по фазе, а коэффициент мощности равен 1.0. Однако, когда источник питания переменного и постоянного тока размещается на линии электропередачи, разность фаз напряжения и тока увеличивается, а коэффициент мощности уменьшается, поскольку процесс выпрямления и фильтрации входного переменного тока нарушает соотношение между напряжением и током в линии электропередачи. . Когда это происходит, это снижает эффективность источника питания и генерирует гармоники, которые могут вызвать проблемы для других систем, подключенных к той же линии электропередачи. Цепи коррекции коэффициента мощности (PFC) изменяют соотношение между напряжением и током линии электропередачи, делая их ближе к синфазным.Это улучшает коэффициент мощности, уменьшает гармоники и повышает эффективность источника питания. Если важны гармоники в линии питания, выберите источник питания с коррекцией коэффициента мощности, имеющий коэффициент мощности 0,9 или выше.

Электромагнитная совместимость (ЭМС)

В изготовленных источниках питания должны использоваться методы проектирования, обеспечивающие электромагнитную совместимость (EMC) за счет минимизации электромагнитных помех (EMI). В импульсных источниках питания постоянное напряжение преобразуется в прерывистый или импульсный сигнал.Это заставляет источник питания генерировать узкополосный шум (EMI) на основной частоте частоты переключения и связанных с ней гармоник. Чтобы сдержать шум, производители должны минимизировать излучаемые или кондуктивные излучения.

Производители блоков питания сводят к минимуму излучение электромагнитных помех, помещая блок питания в металлический ящик или покрывая корпус металлическим материалом распылением. Производители также должны обращать внимание на внутреннюю компоновку источника питания и проводку, которая входит и выходит из него, что может создавать шум.

Большая часть кондуктивных помех в линии питания является результатом работы главного переключающего транзистора или выходных выпрямителей. Благодаря коррекции коэффициента мощности и правильной конструкции трансформатора, подключению радиатора и конструкции фильтра производитель источника питания может снизить кондуктивные помехи, чтобы источник питания мог получить одобрение регулирующего органа по электромагнитным помехам без чрезмерных затрат на фильтр. Всегда проверяйте, соответствует ли производитель источника питания требованиям нормативных стандартов EMI.

Нормативные стандарты

Соблюдение национальных или международных стандартов обычно требуется в отдельных странах. Разные страны могут требовать соблюдения разных стандартов. Эти стандарты пытаются стандартизировать характеристики продукта по электромагнитной совместимости в отношении электромагнитных помех. Среди нормативных стандартов:

• Характеристики электромагнитных помех — Пределы и методы измерения.
• Электромагнитная совместимость — Требования к бытовой технике
• Характеристики радиопомех — Пределы и методы измерения для защиты приемников, кроме тех, которые установлены в самом транспортном средстве / лодке / устройстве или в соседних транспортных средствах / лодках / устройствах.
• Технические условия на приборы и методы измерения радиопомех и помехоустойчивости

Перейти на следующую страницу

На характеристики источника питания влияют несколько характеристик.

Drift: Изменение выходного постоянного напряжения как функция времени при постоянном линейном напряжении, нагрузке и температуре окружающей среды.

Динамический отклик: Источник питания может использоваться в системе, где требуется обеспечить быстрый динамический отклик на изменение мощности нагрузки.Это может иметь место при загрузке высокоскоростных микропроцессоров с функциями управления питанием. В этом случае микропроцессор может находиться в состоянии ожидания и по команде он должен немедленно включиться или выключиться, что вызывает высокие динамические токи с высокой скоростью нарастания напряжения в источнике питания. Чтобы приспособиться к микропроцессору, выходное напряжение источника питания должно увеличиваться или уменьшаться в течение определенного интервала времени, но без чрезмерных выбросов.

КПД: Отношение выходной мощности к входной (в процентах), измеренное при заданном токе нагрузки и номинальных условиях сети (Pout / Pin).

Время поддержки: Время, в течение которого выходное напряжение источника питания остается в пределах спецификации после потери входной мощности.

Пусковой ток: Пиковый мгновенный входной ток, потребляемый источником питания при включении.

Международные стандарты: Укажите требования безопасности к источнику питания и допустимые уровни EMI (электромагнитных помех).

Изоляция: Электрическое разделение между входом и выходом источника питания измеряется в вольтах.Неизолированный источник имеет путь постоянного тока между входом и выходом источника питания, тогда как изолированный источник питания использует трансформатор для исключения пути постоянного тока между входом и выходом.

Регулировка линии: Изменение значения выходного напряжения постоянного тока в результате изменения входного напряжения переменного тока, заданное как изменение в ± мВ или ±%.

Регулировка нагрузки: Изменение значения выходного напряжения постоянного тока в результате изменения нагрузки от разомкнутой цепи до максимального номинального выходного тока, заданного как изменение в ± мВ или ±%.

Выходной шум: Это может происходить в источнике питания в виде коротких всплесков высокочастотной энергии. Шум вызывается зарядкой и разрядкой паразитных емкостей в источнике питания во время его рабочего цикла. Его амплитуда переменная и может зависеть от импеданса нагрузки, внешней фильтрации и способа измерения.

Регулировка выходного напряжения: Большинство источников питания имеют возможность «обрезать» выходное напряжение, диапазон регулировки которого не обязательно должен быть большим, обычно около ± 10%.Одним из распространенных способов использования является компенсация падения напряжения распределения постоянного тока в системе. Подстройка может происходить как вверх, так и вниз от номинального значения с помощью внешнего резистора или потенциометра.

Периодическое и случайное отклонение (PARD)
Нежелательное периодическое (пульсации) или апериодическое (шум) отклонение выходного напряжения источника питания от номинального значения. PARD выражается в мВ от пика до пика или в среднеквадратичном значении при заданной полосе пропускания.

Пиковый ток
Максимальный ток, который блок питания может обеспечить в течение коротких периодов времени.

Пиковая мощность
Абсолютная максимальная выходная мощность, которую блок питания может производить без повреждений. Как правило, он выходит за рамки возможностей непрерывной надежной выходной мощности и должен использоваться нечасто.

Последовательность источников питания: Последовательное включение и выключение источников питания может потребоваться в системах с несколькими рабочими напряжениями. То есть напряжение должно подаваться в определенной последовательности, иначе система может быть повреждена. Например, после подачи первого напряжения и достижения определенного значения второе напряжение может быть увеличено и так далее.При отключении питания последовательность работает в обратном порядке, хотя скорость обычно не является такой большой проблемой, как включение.

Удаленное включение / выключение: Это предпочтительнее переключателей для включения и выключения источников питания. В технических паспортах источников питания обычно указываются параметры постоянного тока для удаленного включения / выключения с перечислением требуемых логических уровней включения и выключения.

Remote Sense: Типичный источник питания контролирует свое выходное напряжение и подает его часть обратно в источник для обеспечения стабилизации напряжения.Таким образом, если выходная мощность имеет тенденцию повышаться или понижаться, обратная связь регулирует выходное напряжение источника питания. Однако для поддержания постоянной выходной мощности на нагрузке источник питания должен фактически контролировать напряжение на нагрузке. Но соединения между выходом источника питания и его нагрузкой имеют сопротивление, и ток, протекающий через них, вызывает падение напряжения, которое создает разницу напряжений между выходом источника питания и фактической нагрузкой. Для оптимального регулирования напряжение, подаваемое обратно к источнику питания, должно быть фактическим напряжением нагрузки.Два (плюс и минус) подключения удаленного датчика источника контролируют фактическое напряжение нагрузки, часть которого затем возвращается к источнику с очень небольшим падением напряжения, потому что ток через два подключения удаленного датчика очень низкий. Как следствие, напряжение, подаваемое на нагрузку, регулируется.

Пульсация: Выпрямление и фильтрация выходного сигнала импульсного источника питания приводит к возникновению составляющей переменного тока (пульсации), которая действует на его выходе постоянного тока. Частота пульсаций — это некоторое целое число, кратное частоте коммутации преобразователя, которая зависит от топологии преобразователя.Пульсации относительно не зависят от тока нагрузки, но могут быть уменьшены за счет фильтрации внешнего конденсатора.

Отслеживание
При использовании нескольких выходных источников питания, когда один или несколько выходов следуют за другим с изменениями в линии, нагрузке и температуре, так что каждый поддерживает одинаковое пропорциональное выходное напряжение в пределах указанного допуска отслеживания по отношению к общему значению.

Щелкните здесь, чтобы просмотреть расширенную версию этой статьи в формате PDF.

Основы поиска и устранения неисправностей источников питания

Когда часть оборудования оказывается полностью разряженной, первое, на что следует обратить внимание, — это источник питания.Если для поиска неисправностей такого рода используется осциллограф, это должен быть портативный прибор с батарейным питанием, изолированный от земли, по крайней мере, вначале. Причина в том, что могут быть внутренние напряжения, которые упоминаются, но плавают над землей, состояние, которое может создавать опасные токи короткого замыкания при подключении к настольному осциллографу. Это особенно верно для импульсных источников питания (SMPS), где обе стороны цепи плавают над землей.

В SMPS возможен ряд конфигураций, в первую очередь понижающий, повышающий и инвертирующий понижающий-повышающий.В каждом из них MOSFET является главным умом. Он выполняет переключение, в то время как диод определяет направление, в котором текут носители заряда, а катушки индуктивности и конденсаторы накапливают электрическую энергию. SMPS регулирует выход, непрерывно изменяя рабочий цикл, в отличие от линейного источника питания, который регулирует выход, внося необходимые изменения, регулируя количество рассеиваемой мощности.

Понижающий преобразователь SMPS аналогичен линейному источнику питания с понижающим трансформатором.Когда переключатель замкнут, на катушку индуктивности подается напряжение. Когда переключатель разомкнут, ток через катушку индуктивности продолжает течь. Обратная связь регулирует ширину импульса с постоянной частотой повторения или регулирует частоту повторения с постоянной шириной импульса.

Повышающий преобразователь SMPS аналогичен линейному источнику питания с повышающим трансформатором. Когда переключатель замкнут, ток индуктора увеличивается. Когда переключатель выключается, возникают скачки напряжения, поскольку индуктор пытается поддерживать постоянный ток, чего он не может сделать, поскольку индуктор использует всю доступную энергию для создания своего магнитного поля.В этом месте диод проводит, и ток от катушки индуктивности течет в конденсатор. Это объясняет более высокое выходное напряжение по сравнению с входным.

В SMPS транзистор, переведенный в область насыщения, периодически прикладывает нерегулируемый постоянный ток на входе к катушке индуктивности, которая функционирует как запоминающее устройство. Во время каждого импульса его магнитное поле увеличивается до тех пор, пока переключатель не будет выключен. Затем накопленная энергия фильтруется. Опорное напряжение сравнивается с выходным сигналом в цепи обратной связи, изменение ширины импульса или частоты.SMPS может работать с частотным входом сети переменного тока или с нерегулируемым входом постоянного тока.

В типичном SMPS сетевое питание поступает в сеть через сетевой фильтр. Затем мощность выпрямляется и сглаживается до высокого постоянного напряжения (несколько сотен вольт). Затем один или несколько транзисторов (или полевых МОП-транзисторов) включают и выключают это высокое постоянное напряжение, чтобы управлять первичной обмоткой трансформатора. (Хотя некоторые топологии SMPS бестрансформаторные.) Напряжение выпрямляется и фильтруется на вторичной стороне трансформатора.

Регулировка выхода осуществляется путем переключения транзисторов через схему управления, которая определяет выходное напряжение (и входной ток) и соответственно регулирует время включения и выключения транзистора. Эта схема управления часто находится на первичной стороне и может получать питание от дополнительной обмотки трансформатора. Образец выходного напряжения обычно возвращается через оптрон. (Опять же, некоторые конструкции SMPS реализуют обратную связь без использования оптопары.) В некоторых случаях схема управления находится на вторичной стороне и управляет переключателем через небольшой дополнительный трансформатор.

Следует отметить, что у ИИП есть стороны высокого и низкого напряжения (первичная и вторичная стороны). Трансформатор изолирует первичную и вторичную стороны. (Опять же, существуют бестрансформаторные ИИП, в которых не реализована изоляция.) Часто, если заземление выхода не подключено к заземлению сети, небольшой высоковольтный конденсатор соединяет эти два заземления на высокой частоте.

Поскольку половина компонентов SMPS напрямую подключается к сетевому напряжению, на первичной стороне источника питания есть опасные напряжения.Накопительный конденсатор большой емкости заряжается при высоком напряжении и может сохранять опасное напряжение даже при отключенном питании от сети. SMPS часто включают в себя истекающие резисторы для рассеивания этого напряжения, но эти резисторы можно сломать, чтобы конденсаторы могли оставаться заряженными. Следовательно, лучше всего разряжать конденсаторы через подходящий резистор (обычно несколько кОм) через изолированные щупы, как на мультиметре. Затем измерьте напряжение, чтобы убедиться, что оно равно нулю, прежде чем продолжить. Также имейте в виду, что радиаторы часто не заземлены и могут находиться под напряжением сети.

Аналогичным образом убедитесь, что все конденсаторы разряжены. Многие неисправные электролитические конденсаторы деформируются или раздуваются. Другие визуальные индикаторы включают сгоревшие черные резисторы и компоненты, которые пахнут горелым, особенно трансформатор. У трансформатора, который пахнет горелым, возможно короткое замыкание. Если это так, часто лучше просто заменить SMPS.

Хотя это может показаться очевидным, устранение неисправности при отсутствии питания начинается с проверки сетевого предохранителя. Перегоревший предохранитель обычно означает наличие множества неисправных компонентов; исправный предохранитель может означать, что проблема была вызвана одним компонентом.

Состояние предохранителя тоже полезно. То, что горело медленно, означает, что отказ не был катастрофическим. Аварийный предохранитель подразумевает сильный ток, повредивший множество компонентов. К сожалению, некоторые предохранители заполнены песком и не позволяют понять, что произошло.

Одна уловка для первого испытания источника питания с перегоревшим предохранителем — временно заменить предохранитель на лампочку. Лампа должна иметь примерно такую ​​же мощность, что и SMPS. Это предотвращает более катастрофические отказы и позволяет избежать неудобств, связанных с многократной заменой предохранителей.Если все в порядке, лампочка должна мигать долю секунды, а затем слегка светиться. Если короткое замыкание все еще есть, лампочка будет ярко светиться — пора искать причину.

Разрыв предохранителя сигнализирует о том, что что-то действительно пошло не так с питанием, возможно, короткое замыкание. Типичные проблемы включают закороченные силовые транзисторы или выпрямительные диоды, особенно в первичной обмотке. Функция диода мультиметра может помочь обнаружить короткие замыкания. Также может быть полезно найти техническое описание микросхемы регулятора в SMPS, если она используется.Многие SMPS имеют схему, близкую к эталонным проектам, указанным в таблице данных.

Если предохранитель исправен, но нет выхода, это может указывать на ограничитель пускового тока (NTC). Также следует проверить резисторы большой мощности на первичной стороне. Если номинал резистора не совпадает с его цветовым кодом или схемным значением, распаяйте одну клемму и проведите повторные измерения. Замените новым, если значения не совпадают.

В первую очередь необходимо проверить резисторы, включенные последовательно с силовыми транзисторами.Иногда первичная обмотка включает в себя резистор большой мощности, включенный последовательно со стабилитроном. Проверьте все диодные переходы с помощью функции диода мультиметра. ИС регулятора могут быть неисправными, но обычно это не так.

Неисправный силовой транзистор увеличивает вероятность выхода из строя других компонентов. Часто SMPS включают компоненты защиты, такие как дополнительный резистор или стабилитрон, чтобы ограничить повреждение в случае катастрофического отказа.
Один из приемов проверки микросхемы контроллера — отключить ее от небольшого внешнего источника постоянного тока и проверить наличие импульсов на базе (или затворе) транзистора.Но некоторые ИС не будут работать без высокого напряжения на переключение, и это может быть указано в таблице данных.

Еще одно замечание: мертвые полупроводники следует заменять точно такими же деталями. Альтернативы хороши, только если оригинал недоступен или слишком дорогой. Для диодов также проверьте время переключения — замена диодов должна быть как минимум такой же или более быстрой, чем старые. Аналогичным образом заменяемые транзисторы должны иметь одинаковое усиление и частоту отсечки. Практическое правило состоит в том, что частота среза должна быть как минимум в десять раз выше частоты переключения.Для полевых МОП-транзисторов емкость затвора не должна превышать емкость старого компонента, а пороговое напряжение затвора должно быть близко к таковому у старого устройства.

Иногда SMPS работает только частично. Он может запуститься, а затем выключиться, или он может пульсировать, пытаясь запустить каждые несколько секунд, или может выдавать неправильное выходное напряжение. Скорее всего, силовые полупроводники хороши, но конденсаторы подозрительны. Или может быть проблема с цепью обратной связи.

Один из приемов состоит в том, чтобы подать внешнее регулируемое постоянное напряжение на выход SMPS, предварительно убедившись, что SMPS не подключен к сети.Когда напряжение постоянного тока постепенно увеличивается, цепь обратной связи должна работать, когда постоянное напряжение приближается к номинальному выходному напряжению. Здесь нет опасного линейного напряжения, поэтому осциллограф может помочь в диагностике цепи обратной связи. Другой способ — снабдить ИС контроллера тем же источником низкого напряжения и исследовать, что происходит на другой стороне оптопары.

Электролитические конденсаторы часто вызывают проблемы с импульсным источником питания. В менее дорогих конструкциях SMPS они часто работают слишком близко к своим пределам тепловыделения.Их жидкий электролит имеет свойство испаряться и изменять свои рабочие характеристики.

Обновлено: 26.03.2021 — 07:02

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *