Чип bga – BGA

Содержание

Как перепаять BGA микросхему | Практическая электроника

Что такое BGA микросхема?

BGA (Ball Grid Array) — матрица из шариков. То есть это тип микросхем, которые вместо выводов имеют припойные шарики. Этих шариков на микросхеме могут быть тысячи!

В наше время микросхемы BGA применяются в микроэлектронике. Их часто можно увидеть на платах мобильных телефонов, ноутбуков, а также в других миниатюрных и сложных устройствах.

Как перепаять BGA микросхему

В ремонтах телефонов  бывает очень много различных поломок, связанных именно с микросхемами. Эти BGA микросхемы могут отвечать за какие-либо определенные функции в телефоне. Например, одна микросхема  может отвечать за питание, другая – за блютуз, третья  – за сеть и тд. Иногда, при падении телефона, шарики микросхемы BGA отходят от платы телефона и  у нас получается, что цепь разорвана, следовательно – телефон теряет некоторые функции. Для того, чтобы поправить это дело, ремонтники или прогревают микросхему, чтобы припойный шарик расплавился и опять “схватился” с контактной площадкой на плате телефона или полностью демонтируют микросхему и “накатывают” новые шарики с помощью трафарета.  Процесс  накатывания шаров на микросхему BGA называется реболлинг. На российских просторах этот термин  не прижился и у нас это называют просто “перекаткой”.

Подопытным кроликом у нас будет плата мобильного телефона.

Для того, чтобы легче было отпаивать “вот эти черные квадратики” на плате, мы воспользуемся инфракрасным преднагревателем или в народе “нижним подогревом”. Ставим на нем температуру  200 градусов по Цельсию и идем пить чай.  После 5-7 минут приступаем парировать нашего пациента.

Остановимся на BGA микросхеме, которая попроще. 

Теперь нам надо подготовить инструменты и химию для пайки. Нам никак не обойтись без трафаретов для различных BGA микросхем. Те, кто серьезно занимается ремонтами телефонов и компьютерной техники, знают, насколько это важная вещь. На фото ниже предоставлен весь набор трафаретов для мастера по ремонту мобильных телефонов.

Трафареты используются для “накатывания” новых шаров на подготовленные BGA микросхемы. Есть универсальные трафареты, то есть под любые BGA микросхемы. А есть также и специализированные трафареты под каждую микросхему.  В самом верху на фото мы видим специализированные трафареты. Внизу слева – универсальные. Если правильно подобрать шаг на микросхеме, то можно спокойно накатать шары на любой из них.

Для того, чтобы сделать реболлинг BGA микросхемы, нам нужны также вот такие простые инструменты и расходные материалы:

Здесь всем вам знакомый Flux-off. Подробнее про него и другую химию можно прочесть в статье Химия для электронщика. Flus Plus, паяльная паста Solder Plus (серая масса в шприце с синим колпачком) считается самой лучшей паяльной пастой в отличие от других паст. Шарики с ней получаются как заводские. Цена  на такую пасту дорогая, но она того стоит.  Ну, и конечно, среди всего прочего барахла есть также ценники (покупайте, чтобы они были очень липкие) и простая зубная щетка. Все эти инструменты нам понадобятся, чтобы сделать реболлинг простой BGA микросхеме.

Для того, чтобы не спалить элементы, расположенные рядом, мы их закроем термоскотчем.

Смазываем обильно микросхему по периметру флюсом FlusPlus

И начинаем прогревать феном по всей площади нашу BGA

Вот здесь и наступает самый ответственный момент при отпаивании такой микросхемы. Старайтесь греть на воздушном потоке чуть меньше среднего значения. Температуру повышайте буквально по пару градусов. Не отпаивается? Добавьте  немного жару, и главное НЕ ТОРОПИТЕСЬ! Минута, две, три… не отпаивается… добавляем жару.

Некоторые ремонтники любят трепаться “хахаха, я отпаиваю BGАшку за считанные секунды!”. Отпаивают то они отпаивают, но при этом не понимают, какой стресс получает отпаиваемый элемент и печатная плата, не говоря уже о близлежащих элементах. Повторю еще раз, НЕ ТОРОПИТЕСЬ, ТРЕНИРУЙТЕСЬ НА ТРУПАХ. НЕ ТОРОПИТЕСЬ срывать не отпаянную микросхему, это вам выйдет боком, потому как оборвете все пятаки под микросхемой! Пользуйтесь специальными устройствами для поднятия  микросхем. Их я находил на Али по этой ссылке.

И вот мы греем феном нашу микросхему

и заодно проверяем ее с помощью экстрактора для микросхем. Про него я писал еще в этой статье.

Готовая к поднятию микросхема должна “плавать” на расплавленных шариках, ну скажем… как кусочек мяса на холодце. Притрагиваемся легонько к микросхеме. Если она двигается и опять становится на свое место, то аккуратненько ее поднимаем с помощью усиков (на фото выше), Если же у вас такого устройства нет, то можно и пинцетом. Но будьте предельно осторожны! Не прикладывайте силу!

В настоящее время существуют также вакуумные  пинцеты для микросхем такого рода. Есть ручные вакуумные пинцеты, принцип действия у которых такой же, как и у Оловоотсоса

а есть также и электрические

У меня был ручной пинцет. Честно говоря, та еще какашка. Закоренелые ремонтники используют электрический вакуумник. Стоит только приблизить такой пинцет к микросхеме BGA, которая уже “плавает” на расплавленных шариках припоя, как он тут же ее подхватывает своей липучкой.

По отзывам, электрический вакуумный пинцет очень удобен, но мне  все-таки не довелось его использовать. Короче говоря, если надумаете, то берите электрический.

Но, вернемся все-таки к нашей микросхеме. Крохотным толчком я убеждаюсь, что шарики действительно расплавились, и плавным движением вверх переворачиваю BGA микросхему. Если рядом много элементов, то идеально было бы использовать вакуумный электрический пинцет или пинцет с загнутыми губками.

Ура, мы сделали это! Теперь будем тренироваться запаивать ее обратно :-).

Вот и начинается самый сложный процесс – процесс накатывания шариков и запаивания микросхемы обратно. Если вы не забыли – это называется перекаткой. Для этого мы должны подготовить место на печатной плате. Убрать оттуда весь припой, что там остался. Смазываем все это дело флюсом:

и начинаем убирать оттуда весь припой с помощью старой доброй медной оплетки. Я бы посоветовал марку Goot wick. Эта медная оплетка себя очень хорошо зарекомендовала.

Если расстояние между шариками очень малое, то используют медную оплетку. Если расстояние большое, то некоторые ремонтники не прибегают к медной оплетке, а берут жирную каплю припоя и с помощью этой капельки собирают весь припой с пятачков. Процесс снятия припоя с пятачков BGA  – очень тонкий процесс. Лучше всего на градусов 10-15 увеличить температуру жала паяльника. Бывает и такое, что медная оплетка не успевает прогреться и вырывает за собой пятачки. Будьте очень осторожны.

Дальше прыскаем туда Flux-off, чтобы очистить от нагара и лишнего флюса наше место под микросхему

и зашкуриваем с помощью простой зубной щетки, а еще лучше ватной палочкой, смоченной в Flux-Off.

Получилось как то так:

Если присмотреться, то видно, что некоторые пятачки я все таки оборвал (внизу микросхемы черные круги, вместо оловянных) Но! Не стоит расстраиваться, они, как говорится, холостые. То есть они не никак электрически не связаны с платой телефона и делаются просто для надежности крепления микросхемы.

Далее берем нашу BGAшку и убираем все лишние припойные шарики. В результате она должны выглядеть вот  так:

И вот начинается самое интересный и сложный процесс – накатывание шаров на микросхему  BGA. Кладем подготовленную микросхему на ценник:

Находим трафарет с таким же шагом шаров и закрепляем с помощью ценника микросхему снизу трафарета. Втираем в отверстия трафарета с помощью пальца паяльную пасту Solder Plus. Должно получиться как-то вот так:

Держим с помощью пинцета одной рукой пинцет, а в другой фен и начинаем жарить на температуре примерно 320 градусов на очень маленьком потоке всю площадь, где мы втирали пасту.  У меня не получилось сразу в двух руках держать и фотоаппарат и фен и пинцет, поэтому фотографий получилось маловато.

Снимаем готовую микросхему с трафарета и смазываем чуть флюсом. Далее пригреваем феном до расплавления шаров. Это  нам нужно, чтобы шарики ровнёхонько стали на свои места.

Смотрим, что у нас получилось в результате:

Блин, чуточку коряво. Одни шарики чуть больше, другие чуть меньше. Но все равно, это нисколько не помешает при запайке этой микросхемы обратно на плату.

Чуточку смазываем пятаки флюсом и ставим микросхему на родное место. Выравниваем края микросхемы с двух сторон по меткам. На фото ниже только одна метка. Другая метка напротив нее по диагонали.

И на очень маленьком воздушном потоке фена с температурой 350-360 градусов запаиваем нашу микрушку. При правильной запайке она должна сама нормально сесть по меткам, даже если мы чуток перекосили.

Где ключ у BGA микросхемы

Давайте разберем момент, когда  мы  вдруг забыли, как ставится микросхема. Думаю, у всех ремонтников была такая проблема ;-). Рассмотрим нашу микрушку поближе через  электронный микроскоп. В красном прямоугольнике мы видим кружок. Это и есть так называемый “ключ” откуда идет счет всех шариковых выводов BGA .

Ну вот, если вы забыли, как стояла микросхема на плате телефона, то ищем  схему на телефон (в интернете их пруд пруди),  в данном случае Nokia 3110С, и смотрим расположение элементов.

Опаньки! Вот теперь мы узнали, в какую сторону должен быть расположен ключик!

Кому лень покупать паяльную пасту (стоит она очень дорого), то  проще будет приобрести готовые шарики и вставлять их в отверстия трафарета BGA.

На Али я их находил целым набором, например здесь.

Заключение

Будущее электроники за BGA микросхемами. Очень большую популярность также набирает технология microBGA, где расстояние между выводами еще меньше! Такие микросхемы перепаивать уже возьмется не каждый). В сфере ремонта будущее за модульным ремонтом. В основном  сейчас все сводится к покупке какого-либо отдельного модуля, либо целого устройства. Не зря же смартфоны делают монолитными, где и дисплей и тачскрин уже идут в одной связке. Некоторые микросхемы, да и вообще целые платы заливают компаундом, который ставит на “нет” замену радиоэлементов и микросхем.

www.ruselectronic.com

Что такое BGA чипы?

Ремонт материнской платы часто заключается в замене или перепайке главных микросхем (чипов), таких как: северный мост, южный мост и видео чип, от которых зависит работа устройств ноутбука.

Выполнены эти радиоэлементы в корпусе типа BGA (Ball Grid Array — в переводе с англ. — массив шариков). В данном типе корпуса выводы размещены на нижней поверхности элемента и представляют собой плоские контакты, с нанесённым на них припоем в виде полусферы.

При неисправности любого из этих чипов компьютер работает нестабильно, зависает или вообще не включаться. Неисправность BGA элементов наиболее часто проявляется следующим образом:

  • при включении ноутбука загораются индикаторы, включается куллер, экран тёмный обращений к HDD нет
  • ноутбук выключается через несколько секунд после включения
  • после включения ноутбук постоянно перезагружается
  • не работают USB порты, клавиатура, тачпад
  • проблемы с изображением или полное его отсутствие
  • ноутбук включается после многократных попыток

Основная причина, по которой сгорает северный, южный мост и видеочип — это перегрев!

В следствии перегрева, кристалл чипа утрачивает контакт с его основой или даёт микротрещину как в самом чипе, так и во внутренних межслойных соединениях. А так же при перегреве возможно повреждение BGA монтажа, при котором происходит отрыв чипа от материнской платы, иногда отрыв происходит вместе с посадочными контактными площадками, что безусловно усложняет процедуру ремонта.

Что же делать при неисправности чипа или повреждения его монтажа ?

В случае когда чип сгорел, однозначно необходимо произвести замену нерабочего чипа на новый. А при нарушении паяльного соединения, если чип исправен и не повреждён, то можно сделать реболлинг ( демонтаж и монтаж чипа с восстановлением шариков припоя).

Реболлинг BGA микросхем проводится с помощью специальной оснастки, набора готовых шариков, паяльной пасты либо заготовок с уже установленными шариками и конечно паяльное оборудование.

Замена или реболлинг BGA микросхем является самым сложным и трудоёмким видом ремонта материнской платы и под силу специалисту имеющему большой опыт. Предлагаю ознакомиться с процессом подготовки к монтажу южного моста на материнскую плату, чтобы представить сложность этой работы.

На чипе снятом с материнской платы (донора) отсутствуют несколько контактных шариков.

Восстанавливаем их при помощи специального трафарета.

Перед закладыванием чипа в трафарет, он предварительно смазывается флюсом.

Плотно зажимается между пластинами трафарета.

Теперь понадобятся калиброванные шарики из припоя.

Которые устанавливаются в нужные отверстия.

Делается прогрев феном, что бы шарики расплавились и соединились с контактными площадками.

Далее чип извлекается из трафарета и промывается от флюса.

Теперь отпаиваем неисправный чип от материнской платы.

ВНИМАНИЕ! Если при прогреве элемент подпрыгнул, в буквальном смысле, то это свидетельствует о расслоении матернской платы. Такая плата ремонту не подлежит!!!

Оплёткой и паяльником очищается посадочное место под чип от лишнего припоя. Вообще-то на этой плате лучше пользоваться паяльником с жалом «волна», так как оплеткой можно повредить лак вокруг пятаков, а они достаточно нежные.

Необходимо тщательно выровнять все пятаки по горизонтали, чтобы не было неровностей во избежание смещения чипа во время пайки.

Теперь всё готово. Осталось припаять новый чип и промыть плату от флюса.

Обращаю ваше внимание, что процедура реболлинга требует определённых профессиональных навыков, которые могут быть получены только в процессе тренировки.

Замена чипа всегда будет лучше реболлинга, т.к. исключает возникновение повторных проблем, к тому же по стоимости разница несущественная. Так же стоит учесть, что материнская плата не выдержит многократных перепаек чипов.

www.kompas-service.ru

Что такое реболлинг? Для чего нужен. Технология реболлинга

Термин реболлинг (реболлинг от англ. reballing — «лечение» отвала BGA чипов) — это замена шариков припоя, которые располагаются под электронными BGA-компонентами. Является частью процесса re-work — ремонта электроники (PCB, печатных плат) с помощью паяльной станции (воздушной или инфракрасной) и/или термофена.

Реболлинг нужен в том случае, когда происходит отвал в местах соприкосновения чипа (BGA) и платы (PCB). Компонент (чип) перестаёт работать вследствие нарушения электрического контакта.

В большинстве случаев проблема так называемого отвала чипа происходят из-за деформации при перегреве или из-за использования низкокачественного припоя.

В свою очередь к деформации и отвалу шаров припоя может приводить эксплуатация электроники в условиях постоянного перегрева.

Вот почему мы настоятельно рекомендуем проводить профессиональную чистку ноутбука от пыли и замену термопасты не реже 1 раза в 2 года (лучше раз в год).

До принятия дериктивы RoHS (Данная директива ограничивает использование потенциально опасных элементов в электротехническом и электронном оборудовании, в данном случае свинец) производители применяли припои с содержанием свинца. После принятия директивы в 2006 году свинцовые припои попали под запрет, и, компании были вынуждены использовать другие сплавы. Вследствие этого с 2006 года количество брака в электронике выросло в несколько раз.

Реболлинг чаще всего применяется при ремонте ноутбуков (материнских плат) и ремонте видеокарт, так как стоимость процедуры намного меньше стоимости целого модуля. При замене северного моста реболлинг не производиться, если чип сразу встал на свою место.

Видео: реболлинг BGA

Источник видео: https://www.youtube.com/user/fineplacer

Как происходит весь техпроцесс реболлинга

Защита от статического электричества

Статическое электричество опасно для компонентов BGA!

Ниже приведён небольшой список средств для защиты от статики (ESD-Защита):

  • Антистатический браслет и иные заземляющие устройства
  • Антиэлектростатические вещества (например аэрозоль Антистатик)
  • Всеразличные увлажнительные приборы или Ионизаторы

Демонтаж BGA Компонента

Демонтаж BGA компонентов намного сложнее, чем кажется на первый взгляд! Для качественного демонтажа необходимо наличие паяльной станции (желательно профессиональной инфракрасной паяльной станции) в состав который входит: термостол, верхний нагреватель на штативе и регулятор температуры желательно с возможностью работы по заданному термопрофилю! После прогрева платы,BGA компонент нужно быстро снять в момент оплавления выводов! Снимать можно механическим или вакуумным пинцетом. (Вакуумным безопаснее меньше шанс повредить плату во время снятия!)

Инструменты и материалы
  • Инфракрасная или воздушная паяльная станция (Станция Фен+Паяльник не подходит, обратите внимание на рисунок ниже чтобы понять о чём идёт речь)
  • Фольга (Для защиты компонентов вокруг BGA чипа)
  • Механический или вакуумный пинцет
  • Флюс
  • Рамочный держатель или Фторопластовые стойки
Последовательность действий
  1. Шаг 1 — Установка платы

    Установите плату в рамочный держатель или на фторопластовые стоики неисправным компонентом к вверху, и поместите на термостол паяльной станции.

  2. Шаг 2 — Подготовка к пайке

    Нанесите флюс вокруг BGA компонента, закройте фольгой компоненты вокруг чипа, установите термодатчик вблизи от BGA компонента для контроля работы по термопрофилю.

  3. Шаг 3 — Пайка

    Установите верхний нагреватель над неисправным компонентом задайте термопрофиль для пайки и ждите завершения.

  4. Шаг 4 — Снятие BGA компонента

После того как процесс пайки завершиться быстро снимите Компонент при помощи вакуумного или механического пинцета.

Процесс снятия шариковых выводов (деболлинг)

После снятия BGA компонента с платы необходимо убрать оставшийся припой как с платы, так и с самого компонента!(собственно эта процедура и называется деболлинг) Существует много инструментов, которые позволяют снять остатки припоя с BGA компонента. Это могут быть как вакуумные инструменты с горячим воздухом, так и паяльники, так же существуют низкотемпературные установки пайки волной, которые более предпочтительны в данном случае, они не сильно нагревают компонент, из чего следует что шансов повредить компонент нагревом стремиться к нулю!

Поскольку паяльники с температурным контролем пайки не так редки, мы опишем процесс деболлинга с использованием паяльника с жалом.

Внимание: Процесс деболлинга содержит множество потенциально опасных для чипа механических и температурных стрессов, по этому следует быть аккуратней.

Инструменты и материалы
  • Флюс
  • Паяльник
  • Изопропиловые салфетки
  • Оплётка (Плетёнка) (Медная лента для удаления припоя)
  • Антистатический коврик (Излишней ESD защиты не бывает)
Дополнительные рекомендуемые инструменты
  • Микроскоп
  • Вытяжка для облегчения удаления дыма, образующихся в процессе выпаивания
  • Защитные очки
  • Подготовка
  1. Разогрейте паяльник.
  2. Убедитесь что вы защищены от статики.
  3. Перепроверьте каждый чип на загрязнение, пропущенные контактные площадки, а также паяемость.
  4. Оденьте защитные очки.

Примечание: Проведение сушки компонента, для удаления влажности рекомендуется делать до выполнения его деболлинга.

Последовательность действий
  1. Шаг 1 — Нанесение флюса на BGA компонент:

    Положите BGA компонент на антистатический коврик, стороной контактных площадок вверх. Нанесите равномерно Флюс пасту на BGA компонент. (Слишком малое количество флюса сделает процесс деболлинга затруднительным.)

  2. Шаг 2 — Снятие шариков припоя:

    Используя плетёнку и паяльник, чтобы снять шарики припоя с контактных площадок Чипа. Положите плетенку на чип поверх флюса, после чего прогревайте паяльником. Перед тем, как сместить плетенку по поверхности чипа, дождитесь чтобы паяльник ее прогрел и расплавил шарики припоя.

    ВНИМАНИЕ:

    Не надавливайте на чип жалом паяльника. Излишнее давление может повредить чип или поцарапать контактные площадки. Для достижения лучших результатов , прочистите BGA компонент с помощью чистого куска плетенки.

  3. Шаг 3 — Очистка чипа

    После Удаления припоя с поверхности чипа, Сразу же очистите чип с помощью салфетки, смоченной в изопропиловом спирте. Своевременная очистка чипа облегчит удаление остатков флюса.

    Протирая поверхность чипа, удалите с него флюс. Постепенно сдвигайте чип при протирке на более чистые участки салфетки. При очистке всегда поддерживайте за противоположную сторону чипа.

    Примечание:

    1. Никогда не очищайте BGA чип загрязненным участком салфетки.

    2. Всегда используйте новую салфетку для каждого нового чипа.

  4. Шаг 4 — Проверка

    Рекомендуется, чтобы проверка проводилась под микроскопом.

    Проверяйте чистоту контактных площадок, поврежденные площадки и неудаленные шарики припоя.

    Примечание:

    Поскольку флюс имеет коррозийное действие, рекомендуется провести дополнительную очистку, в случае, если реболлинг чипа не будет сделан сразу.

  5. Шаг 5 — Промывка

    Нанесите деионизованную воду (Вода не имеющая электически заряженных частиц.(ионов)) на контактные площадки чипа и потрите их щеткой (можно использовать обычную зубную щётку). Это поможет смыть остатки флюса с чипа. После чего просушите чип сухим воздухом. Повторно проверьте поверхность (Шаг 4).

Если чип будет некоторое время лежать без нанесенных шариков, необходимо убедиться. Что его поверхность очень чистая. Погружение чипа в воду на любой промежуток времени НЕ РЕКОМЕНДУЕТСЯ.

Подготовка к монтажу BGA компонента

Инструменты и материалы
  • BGA трафарет
  • Держатель для трафарета
  • Флюс
  • Деионизованная вода
  • Поддон для очистки
  • Щетка для очистки
  • Пинцет
  • Кислотоупорная щетка
  • Печь оплавления или система пайки
Дополнительно рекомендуемые инструменты
  • Микроскоп
  • Напальчники
  • Подготовка

Перед тем, как вы начнете, убедитесь, что фиксатор для трафарета чист.

Последовательность действий

Выставьте температурный профиль для оборудования, выполняющего оплавление припоя.

  1. Шаг 1 — Вставка трафарета

    Разместите трафарет в фиксаторе. Убедитесь, что трафарет плотно зафиксирован. Если трафарет согнут или помят в фиксаторе, процесс восстановления не получится. Помятие, как правило, является следствием загрязнения фиксатора или плохой его регулировки под трафарет.

  2. Шаг 2 — Нанесите флюс на чип

    Используйте шприц для нанесения небольшого количества флюса на чип.

    Примечание: Перед тем как начать, убедитесь. что поверхность чипа чиста.

  3. Шаг 3 — Распределение флюса по поверхности чипа

    Используя кисточку равномерно распределите флюс по стороне контактных площадок BGA чипа. Постарайтесь покрыть каждую контактную площадку тонким слоем флюса.

    Убедитесь, что все контактные площадки покрыты флюсом. Старайтесь нанести флюс тонко и равномерно, при толстом слое будет плохой контакт между шариками припоя и контактными площадками.

  4. Шаг 4 — Вставка чипа

    Поместите BGA компонент в трафоретный держатель, контактными площадками к вверху.

  5. Шаг 5 — Наложение трафарета

    Наложите сферху трафарет, напомним то что трафарет уже в фиксаторе (верхняя крышка трафаретного держателя), и зафиксируйте так чтобы трафарет прилегал к контактным площадкам.

  6. Шаг 6 — Накатка Шаров

    Высыпте нужное количество шариков припоя на трафарет, наклонными движениями трафаретного держателя раскатывайте шарики, после того как шарики встанут на свои места в трафарете уберите излишки кисточкой.

  7. Шаг 6 — Оплавление

    Поместите трафарет в горячую конвекционную печь или станцию для реболлинга горячим воздухом или ИК, и запустите цикл оплавления.

    В любом случае используемое оборудование должно быть настроено на разработанный для чипа BGA термопрофиль.

  8. Шаг 7 — Охлаждение

    Выньте фиксатор из печи или станции для реболлинга и поместите его в проводящий поддон. Оставьте чип охладиться примерно на пару минут, перед тем, как вынуть его из фиксатора.

  9. Шаг 8 — Выемка BGA чипа

    После того, как чип охладился, выньте его из фиксатора и поместите его в поддон для очистки, стороной шариковых выводов вверх.

  10. Шаг 9 — Вымачивание

    Нанесите деионизованную воду на трафарет BGA и подождите примерно секунд тридцать, прежде чем продолжить.

  11. Шаг 10 — Снятие трафарета

    Используя тонкий пинцет снимите трафарет с чипа. Лучше всего начинать с угла, постепенно снимая трафарет. Трафарет должен быть снят за один прием. Если он вдруг не снимается, добавьте еще деионизованной воды и подождите еще 15 — 30 секунд, перед тем, как продолжить.

  12. Шаг 11 — Очистка от фрагментов грязи

    Возможно, после снятия трафарета останутся небольшие фрагменты частиц или грязи. Уберите их с помощью иголки или пинцета.

    ВНИМАНИЕ:

    Кончик пинцета острый, поэтому может поцарапать паяльную маску на чипе, если вы не будете осторожны.

  13. Шаг 12 — Очистка

    Сразу после того, как вы сняли трафарет с чипа, очистите его с помощью деионизованной воды. Нанесите небольшое количество деионизованной воды и потрите чип щеточкой.

    ВНИМАНИЕ:

    Поддерживайте чип, пока чистите его щеткой во избежание механического повреждения.

  14. Шаг 13 — Промывка чипа BGA

    Промойте чип деионизованной водой. Это поможет удалить маленькие частицы флюса и грязи, оставшиеся после предыдущих этапов очистки.

    Дайте чипу высохнуть на воздухе. Не протирайте его салфетками или тряпочками.

  15. Шаг 14 — Проверка качества нанесения

Используйте микроскоп для проверки чипа на загрязнение, пропущенные шарики или остатки флюса. При необходимости повторной чистки, повторите шаги 11 — 13.

Очистка фиксатора

В течение процесса реболлинга BGA, фиксатор становится все более липким и загрязненным. Необходимо очистить остатки флюса с фиксатора для того, чтобы трафарет сидел в нем правильно. Ниже описанный процесс подходит как для гибких, так и для жестких фиксаторов. Для лучшей очистки неплохо применять ванну с ультра звуковой очисткой

Инструменты и материалы
  • Поддон для очистки
  • Щеточка
  • Стакан
  • Деионизованная вода
Дополнительно рекомендуемый инструмент
  • Маленькая чашка или баночка
  1. Шаг 1 — Вымачивание

    Вымочите фиксатор для трафаретов BGA в теплой деионизованной воде примерно 15 минут.

  2. Шаг 2 — Чистка с деионизованной водой

    Выньте фиксатор из воды и потрите его щеткой.

  3. Шаг 3 — Промывка фиксатора

    Промойте фиксатор деионизованной водой. Дайте ему высохнуть на воздухе.

Монтаж BGA компонента

После того как мы сделали реболлинг очистили и проверили чип необходимо убедиться в том что контактные площадки на плате очищены от остатков припоя и грязи.

И только после проверки начать монтаж компонента для этого нужно нанести на контактные площадки тонкий слой флюса устоновить чип для дальнейшей пайки. Расположение чипа должно точно совподать с контактными площадками.

Отпустить верхний нагреватель и запустить заданный термопрофиль.

Источник: http://x-sys.ru.

hpc.by

BGA — Википедия

Материал из Википедии — свободной энциклопедии

BGA (англ. Ball grid array — массив шариков) — тип корпуса поверхностно-монтируемых интегральных микросхем.

Здесь микросхемы памяти, установленные на планку, имеют выводы типа BGA Разрез печатной платы с корпусом типа BGA. Сверху видно кремниевый кристалл.

BGA произошёл от PGA. BGA выводы представляют собой шарики из припоя, нанесённые на контактные площадки с обратной стороны микросхемы. Микросхему располагают на печатной плате, согласно маркировке первого контакта на микросхеме и на плате. Затем микросхему нагревают с помощью паяльной станции или инфракрасного источника, так что шарики начинают плавиться. Поверхностное натяжение заставляет расплавленный припой зафиксировать микросхему ровно над тем местом, где она должна находиться на плате и не позволяет шарикам деформироваться.

Разновидности

  • FBGA: LFBGA, TFBGA, VFBGA, WFBGA, UFBGA
  • FLGA: TFLGA, VFLGA, WFLGA
  • PBGA: PBGA, PBGA-H, PBGA-MD
  • Extremely Thin
  • Array Packages

Преимущества

Высокая плотность

BGA — это решение проблемы производства миниатюрного корпуса ИС с большим количеством выводов. Массивы выводов при использовании поверхностного монтажа «две линии по бокам» (SOIC) производятся всё с меньшим и меньшим расстоянием и шириной выводов для уменьшения места, занимаемого выводами, но это вызывает определённые сложности при монтаже данных компонентов. Выводы располагаются слишком близко, и растёт процент брака по причине спаивания припоем соседних контактов. BGA не имеет такой проблемы — припой наносится на заводе в нужном количестве и месте.

Теплопроводность

Следующим преимуществом перед микросхемами с ножками является лучший тепловой контакт между микросхемой и платой, что в некоторых случаях избавляет от установки теплоотводов, поскольку тепло уходит от кристалла на плату более эффективно (также, в некоторых случаях, по центру корпуса создаётся одна большая контактная площадка-радиатор, которая припаивается к дорожке-теплоотводу).

Если BGA-микросхемы рассеивают достаточно большие мощности и теплоотвод по всем шариковым выводам недостаточен, то к корпусу микросхемы прикрепляется (иногда приклеивается) радиатор. В качестве примера можно привести видеоплаты для ПК, микросхемы «северных мостов» на материнских платах ПК и т. д.

Малые наводки

Чем меньше длина выводов, тем меньше наводки и излучение. У BGA длина проводника очень мала и может определяться лишь расстоянием между платой и микросхемой, так что применение BGA позволяет увеличить диапазон рабочих частот и, для цифровых приборов (см. Цифровая обработка сигналов), увеличить скорость обработки информации.

Недостатки

Негибкие выводы

Основным недостатком BGA является то, что выводы не являются гибкими. Например, при тепловом расширении или вибрации некоторые выводы могут сломаться. Поэтому BGA не популярен в военной технике или авиастроении.

Отчасти эту проблему решает залитие микросхемы специальным полимерным веществом — компаундом. Он скрепляет всю поверхность микросхемы с платой. Одновременно компаунд препятствует проникновению влаги под корпус BGA-микросхемы, что особенно актуально для некоторой бытовой электроники (например, сотовых телефонов). Также осуществляется и частичное залитие корпуса, по углам микросхемы, для усиления механической прочности.

Дорогое обслуживание

Другим недостатком является то, что после того как микросхема припаяна, очень тяжело определить дефекты пайки. Обычно применяют рентгеновские снимки или специальные микроскопы, которые были разработаны для решения данной проблемы, но они дороги. Относительно недорогим методом локализации неисправностей, возникающих при монтаже, является периферийное сканирование. Если решено, что BGA неудачно припаяна, она может быть демонтирована термовоздушным феном или с помощью инфракрасной паяльной станции; может быть заменена новой. В некоторых случаях из-за дороговизны микросхемы шарики восстанавливают с помощью паяльных паст и трафаретов; этот процесс называют ребо́ллинг, от англ. reballing.

Невозможность замены

Если у ноутбука, например, в материнской плате центральный процессор имеет сокет такого форм-фактора, то в случае апгрейда или неисправности его замена невозможна. В этом случае нужно выпаивать старый процессор и запаивать новый, что экономически нецелесообразно (см. выше).

См. также

Ссылки

wikipedia.green

Реболлинг что это такое и сколько стоит в Москве

По поводу пайки микросхем BGA возникло много спекуляций и мифов. Для того, чтобы наши клиенты имели полную осведомленность, как выглядит этот процесс, мы решили его вкратце описать.

Реболлинг чипа в домашних условиях

Во-первых, мы хотели бы объяснить, что пайка микросхем BGA является очень точным и технологически сложным процессом. Появляющиеся в Интернете инструкции о пайке этих систем с помощью утюга, зажигалки, или, в некоторых случаях китайским строительным термофеном Hot-Air в домашних условиях, по-нашему мнению, высосаны из пальца.

Чипы BGA, используемые в ноутбуках, имеют площадь от 3 до 10 см2 и от 300 до даже 2000 шариков, которые в процессе пайки должны растворяться, в то же время, чтобы система равномерно оседала и пропаялась необходимо обеспечить соответствующий процесс пайки.

Перепайка микросхем в Москве

Надлежащего качества пропайки можно достичь только путем автоматического процесса пайки с использованием специализированного оборудования с программным обеспечением. К сожалению, большинство мастерских по ремонту ноутбуков не имеет современных паяльных станций и пытаясь восстановить материнскую плату с помощью прогрева чипов, вызывают только еще большие повреждения, исправить которые порой уже невозможно и остается только заменить материнскую плату. Цены на bga ремонт в Москве вы найдете ниже.

Пайка BGA на паяльной станции

Чтобы обеспечить правильность процесса пайки необходимо установить режим станции в соответствии с характеристиками, указанными заводом-изготовителем.

Имея подходящее оборудование можно в 99% безопасно провести замену микросхемы BGA, в большинстве случаев возникает необходимость замены чипа на новый. Производители микросхем БГА (Intel, AMD, NVidia) обычно не допускают возможности реболла, но в некоторых случаях существует такая возможность, хотя и связана с некоторыми техническими особенностями и принципами.

Трафареты для реболинга BGA микросхем

При правильном соблюдении в цикле не приводит к его перегреву. Превышение предельных температур системы приводит к выходу чипа из строя в кратчайшие сроки.

Reballing может также осуществляться с сохранением характеристик пайки системы.
Шарики для реболлинга должны иметь приближенный состав к тому, что использует производитель.
Трафареты для нанесения шариков должны быть изготовлены из материала, который не вносит загрязнений в шарики.

Реболлинг BGA пайка микросхем

Чтобы правильно произвести замену микросхемы BGA понадобится не просто обычный Hot-Air. Услуги, которые предоставляются клиентам сервисного центра КомпрайЭкспресс в рамках пайки микросхем BGA на материнских платах:

  • Замена микросхем BGA
  • Пайка микросхем BGA на материнских платах, поставляемых заказчиком
  • Реболлинг BGA микросхем

Сколько стоит реболлинг видеокарты

Реболлинг и перепайка видеочипа цена:

► Обращайтесь в СЦ КомпрайЭкспресс и вы получите профессиональный ремонт плат компьютера на современном оборудовании с соблюдением всех технологий. На все работы и детали предоставляется гарантия до 1 года.

Оставьте онлайн-заявку по форме связи, и мы вам перезвоним через 10-15 минут.

comprayexpress.ru

BGA — это… Что такое BGA?

Проверить информацию.

Необходимо проверить точность фактов и достоверность сведений, изложенных в этой статье.
На странице обсуждения идёт дискуссия на тему: Защита от доступа к выводам.

BGA (англ. Ball grid array — массив шариков) — тип корпуса поверхностно-монтируемых интегральных микросхем

Здесь микросхемы памяти, установленные на планку, имеют выводы типа BGA Разрез печатной платы с корпусом типа BGA. Сверху видно кремниевый кристалл.

BGA произошёл от PGA. BGA выводы представляют собой шарики из припоя, нанесённые на контактные площадки с обратной стороны микросхемы. Микросхему располагают на печатной плате, согласно маркировке первого контакта на микросхеме и на плате. Далее, микросхему нагревают с помощью паяльной станции или инфракрасного источника, так что шарики начинают плавиться. Поверхностное натяжение заставляет расплавленный припой зафиксировать микросхему ровно над тем местом, где она должна находиться на плате. Сочетание определённого припоя, температуры пайки, флюса и паяльной маски не позволяет шарикам полностью деформироваться.

Разновидности

  • FBGA: LFBGA, TFBGA, VFBGA, WFBGA, UFBGA
  • FLGA: TFLGA, VFLGA, WFLGA
  • PBGA: PBGA, PBGA-H, PBGA-MD
  • Extremely Thin
  • Array Packages

Преимущества

Высокая плотность

BGA — это решение проблемы производства миниатюрного корпуса ИС с большим количеством выводов. Массивы выводов при использовании поверхностного монтажа «две-линии-по-бокам» (SOIC) производятся всё с меньшим и меньшим расстоянием и шириной выводов для уменьшения места, занимаемого выводами, но это вызывает определённые сложности при монтаже данных компонентов. Выводы располагаются слишком близко, и растёт процент брака по причине спаивания припоем соседних контактов. BGA не имеет такой проблемы — припой наносится на заводе в нужном количестве и месте.

Теплопроводность

Следующим преимуществом перед микросхемами с ножками является лучший тепловой контакт между микросхемой и платой, что в некоторых случаях избавляет от установки теплоотводов, поскольку тепло уходит от кристалла на плату более эффективно (также, в некоторых случаях, по центру корпуса создаётся одна большая контактная площадка-радиатор, которая припаивается к дорожке-теплоотводу).

Если BGA-микросхемы рассеивают достаточно большие мощности и теплоотвод по всем шариковым выводам недостаточен, то к корпусу микросхемы прикрепляется (иногда приклеивается) радиатор. В качестве примера можно привести видеоплаты для ПК, микросхемы „северных мостов“ на материнских платах ПК и тд.

Малые наводки

Чем меньше длина выводов — тем меньше наводки и излучение. У BGA длина проводника очень мала, и может определяться лишь расстоянием между платой и микросхемой, так что применение BGA позволяет увеличить диапазон рабочих частот и, для цифровых приборов (см. Цифровая обработка сигналов), увеличить скорость обработки информации.

Недостатки

Негибкие выводы

Основным недостатком BGA является то, что выводы не являются гибкими. Например, при тепловом расширении или вибрации некоторые выводы могут сломаться. Поэтому BGA не является популярным в военной технике или авиастроении.

Отчасти эту проблему решает залитие микросхемы специальным полимерным веществом — компаундом. Он скрепляет всю поверхность микросхемы с платой. Одновременно компаунд препятствует проникновению влаги под корпус BGA-микросхемы, что особенно актуально для некоторой бытовой электроники (например, сотовых телефонов). Также осуществляется и частичное залитие корпуса, по углам микросхемы, для усиления механической прочности.

Дорогое обслуживание

Другим недостатком является то, что после того как микросхема припаяна, очень тяжело определить дефекты пайки. Обычно применяют рентгеновские снимки или специальные микроскопы, которые были разработаны для решения данной проблемы, но они дороги. Относительно недорогим методом локализации неисправностей, возникающих при монтаже, является периферийное сканирование. Если решено, что BGA неудачно припаяна, она может быть демонтирована термо-воздушным феном или с помощью инфракрасной паяльной станции; может быть заменена новой. В некоторых случаях из-за дороговизны микросхемы шарики восстанавливают с помощью паяльных паст и трафаретов; этот процесс называют ребо́ллинг, от англ. reball.

См. также

Ссылки

dic.academic.ru

Обновлено: 16.10.2019 — 05:36

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *