Как расшифровывается ДНК | Мир Знаний
Лишь малая часть людей знает как расшифровывается ДНК. Более того, большинство людей (и я не исключение) затрудняются прочитать полное название с первого раза. Хотите попробовать?
Дезоксирибонуклеиновая кислота.
Да уж, словечко не из самых приятных. Нуклеиновые кислоты, такие как дезоксирибонуклеиновая кислота (ДНК) и рибонуклеиновая кислота (РНК) являются химическими переносчиками генетической информации клеток. В клеточной ДНК зашифрована информация, которая будет определять какую роль будет выполнять эта клетка, контролировать её рост и деление, и направлять биосинтез ферментов и белков, необходимых для жизни клетки. В дополнении к нуклеиновым кислотам в «чистом» виде, существуют еще производные нуклеиновых кислот, как например АТФ, которые выполняют не менее важные роли. АТФ являются этакой денежной валютой в мире молекул, поскольку именно она затрачивается при синтезе каких-нибудь сложных соединений.
Нуклеиновые кислоты являются последним из четырех основных классов биологических молекул, о которых мы будем говорить. Возможно, каждый из вас слышал о такой загадочной молекуле ДНК, которая определяет все ваши физические особенности, но вряд ли многие из вас знают что это такое с химической точки зрения.
Так же как белки сделаны из маленьких частичек — аминокислот, нуклеиновые кислоты сделаны из нуклеотидов, соединенных в длинную цепь. Каждый нуклеотид состоит из трех основных частей: углевода, азотистого основания и остатка фосфорной кислоты. В РНК углеводом является рибоза (отсюда и название: рибонуклеиновая кислота), а в ДНК углеводом является производное рибозы, которые называется дезоксирибоза и отличается лишь тем, что в нем находится на один атом кислорода меньше (и отсюда же и название: дезоксирибонуклеиновая кислота). В ДНК содержится четыре основных азотистых основания: аденин, тимин, гуанин и цитозин. В РНК вместо тимина можно встретить довольно похожее основание, которое называется урацил.
И хоть ДНК и РНК похожи с химической точки зрения, они значительно отличаются по размерам. Молекулы ДНК огромны и содержат около 245 миллионов нуклеотидов, а их молекулярная масса достигает 75 миллиардов грамм на моль. Молекулы РНК в сравнении гораздо меньше, самые маленькие содержат 21 нуклеотид и обладают массой в 7000 грамм на моль.
Несмотря на то, что клетки мозга и клетки кожи обладают совершенно разной структурой и выполняют совершенно разные биологические функции, они обладают совершенно одинаковым генетическим кодом, т.е. одинаковыми молекулами ДНК. При этом, примерно любая человеческая ДНК содержит по 30% аденина и тимина, и по 20% гуанина и цитозина. Более того, феномен равенства количеств тимина и аденина, гуанина и цитозина не является уникальным для человеческого организма. Это повсеместное явление в природе. Но почему?
В 1953 году, Джеймс Уотсон и Фрэнсис Крик обнаружили истинную вторичную структуру молекулы ДНК. Согласно их модели, ДНК состоит из двух цепочек из нуклеотидов, которые сворачиваются в витки двойной спирали, также как винтовые лестницы. Две цепочки не идентичны, а комплементарны и удерживаются водородными связями. Каждый Аденин (А) связывается с Тимином (Т), а каждый Гуанин (G) связывается с Цитозином (С) и наоборот. То есть, каждый раз как в одной цепочке встречается А, в другой цепочке будет Т. Этот факт обьясняет то, что мы видим одинаковые количества А и Т, G и С в любых живых организмах.
В среднем, каждый виток спирали ДНК содержит около 10 пар оснований (нуклеотидов). Как можно заметить из рисунка: две нити ДНК переплетаются таким образом, что образуются две разных по размерам бороздки: большая (12А в ширину) и малая (6А в ширину), где 1 А в 10 миллиардов раз меньше метра. Большая бороздка немного глубже, и как мы видим на картинке, все азотистые основания складываются в хорошие такие параллельные линии. Все дело в том, что эти основания содержат шестичленные и пятичленные ароматические циклы, которые по форме являются шести- и пятиугольниками. Их называют ароматическими потому, что они а) плоские и б) содержат много двойных связей. Эти самые двойные связи и могут стабилизировать структуру ДНК если, например, две двойных связи с двух разных ароматических молекул находятся строго параллельно друг под другом. Именно так и происходит в реальной структуре и мы видим параллельно-лежащие молекулы и пространство между ними. Большое количество полициклических ароматических молекул может пролезать в эти пространства, или на научном языке интеркалировать. Многие канцерогены (вещества вызывающие рак) и лекарства от рака функционируют именно взаимодействуя с ДНК методом интеркаляции.
Генетическая информация организма хранится как последовательность нуклеотидов в цепочке ДНК. Все гены, которые определяют наш цвет глаз, наш цвет волос, наш цвет кожи, наши особенности, наш потенциальный рост, наши физические задатки — все это всего лишь последовательность четырех нуклеотидов А, Т, G и С. Ровно как все операционные системы — это лишь последовательности 0 и 1, точно так же ДНК это — последовательности четырех нуклеотидов.
Для того чтобы сохранять генетическую информацию и передавать её следующим поколениям должен существовать механизм для копирования ДНК. Чтобы использовать эту информацию, должен существовать механизм для расшифровки и использования этого кода. Хорошая новость заключается в том, что эти механизмы более-менее изучены.
Однажды, Фрэнсис Крик сформулировал центральную догму молекулярной биологии, которая гласит: функция ДНК заключается в хранении и передаче информации РНК, а функция РНК заключается в чтении, де|шифровке и использование информации из ДНК для создания белков. И хоть такой взгляд может казаться слишком упрощенным, он достаточно хорошо обобщает детали.
Существует три фундаментальных процесса:
- Репликация — процесс по которому создаются идентичные копии ДНК с целью передачи информации потомкам.
- Транскрипция — процесс по которому генетическая информация читается и переносится из ядра клетки к специальным станциям (рибосомам), где происходит синтез белка.
- Трансляция — сам процесс синтеза белка в специальных станциях.
Репликация ДНК — это реакция, катализируемая ферментами, которая начинается с частичного раскручивания двойной спирали в некоторых местах молекулы ДНК. Раскручивание происходит под действием фермента хеликаза (от английского хеликс — спираль), иными словами приходит фермент и разрывает парочку водородных связей между азотистыми основаниями, тем самым образуя некий пузырь и выворачивая азотистые основания навстречу окружающей среде. При этом, рядом спокойно плавают разные нуклеотиды в свободном виде, и мимо проходя, они подходят к азотистым основаниям ДНК и образуют с ними водородные связи. Таким образом, к каждой из старых двух цепочек ДНК приходят новые нуклеотиды и образуется две молекулы ДНК, каждая из которых содержит по цепочке от начальной молекулы. Нуклеотиды выстраиваются по принципу комплементарности, и поэтому две новые копии идентичны. Размах процесса репликации просто ошеломляет: каждое ядро любой нашей клетки содержит по две копии 22 х хромосом и еще две половые хромосомы (всего 46). Каждая хромосома стоит из одной большой молекулы ДНК, компактно свернутой вокруг специальных белков, называемых гистонами. В целом, оценивается что во всех 46 хромосомах находится в сумме около 3 миллиардов пар оснований, или 6 миллиардов нуклеотидов. Несмотря на такой размер генома человека, процесс занимает всего несколько часов, а средняя скорость репликации ДНК составляет 50 нуклеотидов в секунду.
Но разве не опасно копировать нашу ДНК так быстро? Случайная ошибка и в ДНК встанет неправильный нуклеотид, а это уже будет означать мутацию всего гена! Если бы мы сознательно копировали нашу ДНК, мы бы перепроверяли каждое основание по несколько раз, никто же не хочет случайных мутаций? Чтобы убедиться в отсутствии ошибок, клетки тоже делают повторное чтение цепочки ДНК и при необходимости исправляют ошибки. В итоге, ошибка может встречаться лишь один раз на каждые 10-100 миллиардов нуклеотидов. При этом, учитывая то, что молекулы ДНК копируются при каждом клеточном делении, а клетки делятся на протяжении всей жизни, всего 60 случайных ошибок (мутаций) передается следующему поколению.
После того как ДНК полностью копируется, образуются две новые копии. Так происходит с каждой хромосомой. В итоге, когда клетка делится на две новые, она передает одну копию одной клетке, а другую другой. Похожим образом происходит и образование половых клеток, которые участвуют в процессе передачи генетической информации от поколения к поколению.
Но как же организм может читать информацию зашифрованную в молекуле ДНК? Вернемся к РНК. Ранее мы говорили, что она структурно похожа наиДНК, но содержит рибозу вместо дезоксирибозы, и урацил вместо тимина. В нашем организме есть четыре основных типа РНК: матричная (информационная) — мРНК, рибосомальная — рРНК, транспортная — тРНК, и много маленьких РНК, также называемых функциональными РНК. Последние выполняют большое количество различных функций внутри клетки, например остановка процесса транскрипции или ускорение химической модификации других молекул РНК (катализ).
Генетическая информация в ДНК содержится в определенных сегментах, называемых генами, каждый из которых состоит из специфичной последовательности нуклеотидов, которые кодируют тот или иной белок. Да, да, именно так: все наши гены это просто последовательности нуклеотидов, которые кодируют синтез того или иного белка. При этом, по большей части ДНК хранится в свернутом виде, однако, в разных частях организма развернуты разные части ДНК, будто бы открыты разные страницы одной книги. Именно поэтому, клетки мозга, клетки крови, мышцы, железы обладают одной ДНК но такими разными функциями, которые определяются теми или иными белками в их составе.
Но как же происходит синтез белка? Во-первых, представим что есть определенная последовательность ДНК на цепочке №1, а цепочка ей комплементарная пусть будет №2. Во время транскрипции приходит специальный фермент и опять разворачивает небольшой участок молекулы ДНК. При этом, вместо того, чтобы позволять нуклеотидам присоединяться к обоим цепочкам, фермент удерживает первую (ее еще называют кодирующей), а рибонуклеотиды (именно те, которые входят в состав РНК) присоединяются ко второй цепочке (ее еще называют шаблонной), образуя матричную РНК, которая комплементарна цепочке №2, которая в свою очередь комплементарна цепочке №1. Надеюсь вы еще не запутались. В итоге, мРНК идентична кодирующей цепочке №1, за исключением лишь того, что вместо тимина везде находится урацил.
Очень часто в природе встречается следующая картина: последовательности ДНК, которые несут какой либо смысл (гены) начинаются в одном месте (называемом экзоном), но периодически прерываются бессмысленными вставками (в том плане, что они не кодируют белок) называемыми интронами. Финальная мРНК появляется только тогда, когда эти интроны вырезаются специальными ферментами, которые называются сплисеосомами. Да, пожалуй к этому моменту вы уже убедились в том, что биологи любят придумывать разные термины. Например, гены кукурузы, которые кодируют фермент триозофосфатизомеразу (отвечает за очень важную стадию в процессе метаболизма углеводов) содержат 8 некодирующих интронов, которые занимают примерно 70% от всей последовательности, и 9 кодирующих экзонов, которые занимают оставшиеся 30%.
Ну вот у нас есть мРНК, которая содержит кодирующую последовательность, но что дальше? мРНК приходит в рибосому (специальную станцию клетки для биосинтеза белка) и там встречается с другими ферментами, в том числе с разными тРНК. Каждые три нуклеотида в мРНК кодируют ту или иную аминокислоту. Например AAA кодирует аминокислоту лизин, a UGC кодирует цистеин. Но почему природа выбрала именно три нуклеотида, не больше и не меньше? Дело в том, что существует лишь 16 разных последовательностей из двух нуклеотидов (при выборе из A,T,G,C), а аминокислот как мы помним 20. Если добавить всего один нуклеотид, количество вариантов возрастает до 64, но теперь одна и та же аминокислота может кодироваться разными последовательностями ДНК. Возвращаясь к кодированию аминокислот: замени хоть один нуклеотид — и ты получишь другую аминокислоту. А вдруг она играла критичную роль? Без нее организм уже становится мутантом.
Что мы имеем в итоге? ДНК состоит из последовательностей нуклеотидов. Гены — последовательность нуклеотидов. Три таких нуклеотида называют кодоном и они являются такой буковкой в молекулярном мире. Каждая буковка кодируют какую-либо аминокислоту. Но что же значит кодируют? Дело в том, что существует 61 тРНК, у которых есть участки комплементарные кодонам, а каждая из этих тРНК несет на другом конце одну аминокислоту. В процессе биосинтеза белков, тРНК присоединяется к комплементарным участкам на мРНК, а ферменты соединяют аминокислоты, которые они несут с другой стороны. Но мы сказали что существует 64 кодона, а тРНК вроде как всего 61, где остальные 3? Остальные 3 тРНК останавливают процесс биосинтеза белка, т.е. в конце любой генетической последовательности есть кодон который говорит организму остановиться. Вот такой вот сложный механизм обеспечивает всю нашу генетическую разнообразность.
Оставить эмоциюНравится Тронуло Ха-Ха Ого Печаль Злюсь
13513mir-znaniy.com
днк — с русского на английский
DNA – deoxyribonucleic acid
Биополимер дезоксирибонуклеиновая кислота), материальная форма хранения наследственной информации.
Пул генетически компетентной ДНК фага, образующийся во время вегетативного состояния фага, но ещё не собранный в законченные частицы фага.
Модель структуры ДНК, построенная Уотсоном и Криком, согласно которой молекула ДНК состоит из двух полинуклеотидных цепей, образующих правую спираль относительно одной и той же оси. Направление цепей взаимно противоположное.
Расхождение двух полинуклеотидных цепей ДНК в результате разрыва водородных связей при нагревании или под действием, например, щёлочи.
Двухцепочечная молекула ДНК. Синоним двойной спирали ДНК.
Цепочка ДНК, содержащая последовательности оснований, комплементарные противоположной цепочке.
ДНК участков, соединяющих одну нуклеосому с другой.
Метилирование или глюкозилирование определённых оснований ДНК, обычно аденина или цитозина; процесс необходим клетке для защиты собственной ДНК от воздействия рестрикционной эндонуклеазы.
Двухцепочечная ДНК из клетки с интактными водородными связями между цепочками.
Одна цепочка ДНК, содержащая перевёрнутую последовательность оснований, которая может складываться в обратную сторону и таким образом гибридизоваться сама с собой.
Последовательности чужеродной ДНК, встроенные в клонирующий вектор.
Период синтеза ДНК в интерфазе.
Способность двойной спирали ДНК принимать различные конформации.
ДНК, образованная в результате объединения фрагментов ДНК разного происхождения. На рекомбинантной ДНК основан метод генетической инженерии in vitro.
Процесс, при котором информация, закодированная в последовательности оснований молекулы родительской ДНК, передаётся с максимальной точностью дочерней ДНК за счёт комплементарности пар оснований AT и GC репликация).
ДНК, кодирующая рибосомную РНК.
ДНК, состоящая из обладающих характерными особенностями нуклеотидных последовательностей , которые расположены тандемно и сотни раз повторяются. Функция этой ДНК пока не выяснена.
Кольцевая замкнутая ДНК, в которой число витков двойной спирали превышает величину, характеризующую линейную ДНК, находящуюся в тех же условиях. Сверхспирализация – важнейшее свойство ДНК, влияющее на её функционирование в клетке.
ДНК, располагающаяся между генами; транскрибируется не всегда.
Репаративный синтез в отличие от репликативного.
ДНК неизвестной функции.
ДНК, в которой последовательности оснований повторяются многократно в геноме клетки.
Тип упаковки генетического материала в клетках высших организмов.
Гибридная ДНК, полученная путём вставки фрагмента чужеродной ДНК в плазмиду.
ДНК, не содержащаяся в нормальном комплекте хромосомы данного организма. Встраивание такой ДНК может иметь место, например, при вирусной инфекции.
translate.academic.ru
ДНК — это… Что такое ДНК?
ДНК (дезоксирибонуклеиновая кислота), НУКЛЕИНОВАЯ КИСЛОТА, которая является основным компонентом ХРОМОСОМ ЭУКАРИОТОВЫХ клеток и некоторых ВИРУСОВ. ДНК часто называют «строительным материалом» жизни, поскольку в ней хранится ГЕНЕТИЧЕСКИЙ КОД, являющийся основой НАСЛЕДСТВЕННОСТИ. Молекулярную структуру ДНК впервые установили Джеймс УОТСОН и Френсис КРИК в 1953 г. Она состоит из ДВОЙНОЙ СПИРАЛИ, сложенной двумя длинными лентами чередующихся молекул сахара (дезоксирибозы) и фосфатных групп, связанных азотистыми основаниями. В целом молекула имеет форму, напоминающую скрученную веревочную лестницу, перекладинами которой служат азотистые основания — АДЕНИН (А), ЦИТОЗИН (С), ГУАНИН (G) и тимин (Т). Основания соединяются попарно всегда в одном и том же порядке: аденин с тимином, гуанин с цитозином. Правильность этого соединения обеспечивает точность самовоспроизведения. При воспроизведении ленты ДНК разделяются, и каждая создает образец для синтеза новой ленты РНК (ИНФОРМАЦИОННОЙ РНК). Этот процесс МАТРИЦИРОВАНИЯ, протекающий при посредстве энзимов, приводит к возникновению копии, тождественной исходной спирали. Количество ДНК всегда постоянно для всех клеток данного вида растения или животного. В процессе воспроизведения количество ДНК удваивается, когда образуются реплики хромосом перед началом МИТОЗА; в гаметах, яйцеклетках и спермотозоидах (ГАПЛОИДНЫХ клетках) это количество вдвое меньше, чем в других клетках тела (см. МЕЙОЗ). Комбинация основания с соответствующими молекулами фосфата и сахара называется НУКЛЕОТИДОМ, а вся цепочка в целом называется полинуклеотидной. Генетический код хранится в виде последовательности нуклеотидов: каждая АМИНОКИСЛОТА кодируется тремя нуклеотидами, а ряд кислот представляет собою ген. см. также БИОТЕХНОЛОГИЯ, ГЕННАЯ ИНЖЕНЕРИЯ, МУТАЦИЯ, ИССЛЕДОВАНИЕ РЕКОМБИНАЦИИ ДНК.При помощи методики, назы ваемои идентификацией по ДНК, можно очень точно олре делить личность человека Эта методика позволяет представить ДНК визуально (1). Рису нок каждой ДНК уникален (по добно отпечаткам пальцев), у каждого человека он свои, за исключением близнецов В случаях, когда имеются сомне ния относительно отцовства, при помощи идентификации ДНК его можно установить точно. ДНК присутствует во всех клетках, поэтому в качес! ве исходного материала можно брать кровь (2), частицы кожи и даже капли пота ДНК выделяется из образца (3), а затем добавляется энзим, разделяющий ее Энзим воздействует на участки между генами (4). Затем гены сортируются по размеру в электрическом поле(5). Для этого применяется методика гелевого электрофореза, поскольку обреки ДНК обладают зарядом, достаточным, чтобы пройти сквозь гель. Насколько далеко они продвинутся, зависит от размера об рывка. В резулыаге получается узор, уникальный для каждой личности. В ДНК ребенка сочетаются черты ДНК обоих родителей, поэтому между узорами их ДНК будет определенное сходство Отцовство подтверждается при совпадении определенных черт (6).
В отдельной клетке человеческого тела содержится 4 м ДНК (дезоксирибонуклеи-новой кислоты), упакованных в ядро, поперечник которого измеряется 5000-ными долями миллиметра. В этом клубке нитей содержится вся информация, необходимая для создания человеческого существа. ДНК управляет развитием организма и поддерживает его жизнедеятельность, снабжая клетки информацией о том, как строятся белки — молекулы, гибко приспосабливающиеся к различным функциям, от которых зависит жизнь. ДНК клетки можно сравнить с обширной библиотекой закодированных команд; длинные молекулы размещены в хромосомах, а на них, подобно бусинам на нитке, нанизаны гены. Считается, что каждая хромосома содержит более 100 000 различных генов — коротких, выполняющих различные функции отрезков ДНК, каждый из которых содержит одну из программ создания и существования организма, породившего их. Полный набор генов живого организма носит название гено-ма, и каждая клетка организма несет в себе по меньшей мере одну копию этого набора. ДНК постоянно пребывает замкнутой в ядре клетки. Однако механизм создания белков располагается в цитоплазме, с наружной стороны клеточной мембраны. ДНК сообщается с этим механизмом посредством информационной молекулы, именуемой РНК. Информационная РНК (иРНК) химически аналогична ДНК, но имеет не двойную, а одинарную структуру, в которой одно из оснований, тимин, заменено на урацил. Когда ген активируется, последовательность оснований ДНК, соответствующих этому гену, переносится в информационную РНК. Энзимы, содержащиеся в ядре клетки, «считывают» эту последовательность и конструируют дополняющую ленту из иРНК (4) из составных частей—комплексов основание-сахар-фосфат (5). После того, как весь код гена переписан в иРНК, эта молекула (6) проходит в цитоплазму через поры в оболочке ядра (7). Затем иРНК прикрепляется к одной или нескольким рибосомам (8) — мелким частицам цитоплазмы, в которых и происходит синтез белков. Рибосома движется вдоль молекулы иРНК, проходя последовательно через каждое трехэлементное «слово», определяющее конкретную аминокислоту. После этого вступает в дело другой тип РНК, транспортный (тРНК) (9). Эта молекула действует как переходное звено между трехчленными «словами» в иРНК и аминокислотами, которые, соединяясь, образуют белки На одном конце каждой молекулы тРНК имеется последовательность из трех оснований (10). являющаяся дополнением к определенной комбинации на иРНК, а на другом конце находится аминокислота (11), которая определяется этой комбинацией. Соответствующие тРНК вклиниваются в иРНК, и аминокислоты, носителями которых они являются, связываются посредством энзимов. По мере движения рибосомы вдоль ленты иРНК цепочка белков постепенно удлиняется (12). Обычно цепочка белков, образованная таким образом, может содержать последовательность от 100 до 500 аминокислот, соединенных энзимами.
Строение ДНК определяет ее роль как хранилища информации о клетках (А). Ее молекулу часто называют двойной спиралью, поскольку в ее основе лежат два «каркаса», изогнутых по спирали (1,2), состоящие из сахарных и фосфатных групп. Связь между двумя половинками спирали осуществляют так называемые основания (3), расположенные подобно пере-кпадинам лестницы — аденин, тимин, гуанин и цитозин. Эти перекладины составлены из пары оснований, по одному от каждой половинки каркаса, причем пары складываются по строгому правилу: аденин (голубой цвет на рисунке) всегда с тимином (синий цвет), а цитозин (красный) — с гуанином (желтый). Поэтому последовательность оснований на одной из половин каркаса является точным зеркальным отражением, или дополнением, к последовательности на другой половине. Когда происходит репликация ДНК в процессе деления клетки, эта строго соблюдаемая структура способствует уменьшению вероятно •и. сти ошибок — илине-JF» »’ благоприятных мутаций. Связи между парами оснований относительно слабы, что позволяет молекуле ДНК «расстегиваться» перед началом репликации или матрицирования. При рассмотрении под микроскопом хромосома делящейся клетки имеет простую крестообразную форму (А), которая скрывает подлинную сложность «упаковки» ДНК внутри нее Если увеличить маленький отрезок хромосомы (В), можно увидеть плотно свернутую спиралью полоску хроматина —ДНК, тесно связанной с белком. При дальнейшем увеличении сегмента хроматина(С) становится видно, что он представляет собою туго закрученную спираль нуклеосом — напоминающих бусины элементов, состоящих из белковой сердцевины, окруженной молекулой ДНК (D). Белковая сердцевина имеет положительный заряд и благодаря этому связывается с отрицательно заряженной молекулой ДНК (Е). имеющей структуру двойной спирали (F). Для строения клетки важно то, что ДНК можно таким образом сжимать. Иначе она занимала бы намного больше места. Сохранение ДНК в виде компактных связок облегчает ее функционирование внутри клетки: отдельные участки разворачиваются по мере того, как возникает необходимость в генах, содержащихся на них.
Научно-технический энциклопедический словарь.
dic.academic.ru
Что такое ДНК: состав, виды, строение молекулы
Аббревиатура клеточный ДНК многим знакома из школьного курса биологии, но мало кто сможет с легкостью ответить, что это. Лишь смутное представление о наследственности и генетике остается в памяти сразу после окончания учебы. Знание, что такое ДНК, какое влияние оно оказывает на нашу жизнь, порой может оказаться очень нужным.
Статьи по темеМолекула ДНК
Биохимики выделяют три типа макромолекул: ДНК, РНК и белки. Дезоксирибонуклеиновая кислота – это биополимер, который несет ответственность за передачу данных о наследственных чертах, особенностях и развитии вида из поколения в поколение. Его мономером является нуклеотид. Что такое молекулы ДНК? Это главный компонент хромосом и содержит генетический код.
Структура ДНК
Ранее ученые представляли, что модель строения ДНК периодическая, где повторяются одинаковые группы нуклеотидов (комбинаций молекул фосфата и сахара). Определенная комбинация последовательности нуклеотидов предоставляет возможность «кодировать» информацию. Благодаря исследованиям выяснилось, что у разных организмов структура различается.
Особенно известны в изучении вопроса, что такое ДНК американские ученые Александер Рич, Дэйвид Дэйвис и Гэри Фелзенфелд. Они в 1957 году представили описание нуклеиновой кислоты из трех спиралей. Спустя 28 лет, ученый Максим Давидович Франк-Каменицкий продемонстрировал, как дезоксирибонуклеиновая кислота, которая состоит из двух спиралей, складывается Н-образной формой из 3 нитей.
Структура у дезоксирибонуклеиновой кислоты двухцепочечная. В ней нуклеотиды попарно соединены в длинные полинуклеотидные цепи. Эти цепочки при помощи водородных связей делают возможным образование двойной спирали. Исключение – вирусы, у которых одноцепочечный геном. Существуют линейные ДНК (некоторые вирусы, бактерии) и кольцевые (митохондрии, хлоропласты).
Состав ДНК
Без знания, из чего состоит ДНК, не было бы ни одного достижения медицины. Каждый нуклеотид – это три части: остаток сахара пентозы, азотистое основание, остаток фосфорной кислоты. Исходя из особенностей соединения, кислоты могут называться дезоксирибонуклеиновой или рибонуклеиновой. В состав ДНК входит огромное число мононуклеотидов из двух оснований: цитозин и тимин. Кроме этого, она содержит производные пиримидинов, аденин и гуанин.
Есть в биологии определение DNA – мусорная ДНК. Функции ее еще неизвестны. Альтернативная версия названия – «некодирующая», что не верно, т.к. она содержит кодирующие белки, транспозоны, но их назначение тоже тайна. Одна из рабочих гипотез говорит о том, что некоторое количество этой макромолекулы способствует структурной стабилизации генома в отношении мутаций.
Где находится
Расположение внутри клетки зависит от особенностей вида. У одноклеточных ДНК находится в мембране. У остальных живых существ она располагается в ядре, пластидах и митохондриях. Если говорить о человеческой ДНК, то ее называют хромосомой. Правда, это не совсем так, ведь хромосомы – это комплекс хроматина и дезоксирибонуклеиновой кислоты.
Роль в клетке
Основная роль ДНК в клетках – передача наследственных генов и выживание будущего поколения. От нее зависят не только внешние данные будущей особи, но и ее характер и здоровье. Дезоксирибонуклеиновая кислота находится в суперскрученном состоянии, но для качественного процесса жизнедеятельности она должна быть раскрученной. С этим ей помогают ферменты — топоизомеразы и хеликазы.
Топоизомеразы относятся к нуклеазам, они способны изменять степень скрученности. Еще одна их функция – участие в транскрипции и репликации (делении клеток). Хеликазы разрывают водородные связи между основаниями. Существуют ферменты лигазы, которые нарушенные связи «сшивают», и полимеразы, которые участвуют в синтезе новых цепей полинуклеотидов.
Как расшифровывается ДНК
Эта аббревиатура для биологии является привычной. Полное название ДНК- дезоксирибонуклеиновая кислота. Произнести такое не каждому под силу с первого раза, поэтому часто в речи расшифровка ДНК опускается. Встречается еще понятие РНК – рибонуклеиновая кислота, которая состоит из последовательностей аминокислот в белках. Они напрямую связаны, а РНК является второй по важности макромолекулой.
ДНК человека
Человеческие хромосомы внутри ядра разделены, что делает ДНК человека самым стабильным, полным носителем информации. Во время генетической рекомбинации спирали разделяются, происходит обмен участками, а затем связь восстанавливается. За счет повреждения ДНК образовываются новые комбинации и рисунки. Весь механизм способствует естественному отбору. До сих пор неизвестно, как долго она отвечает за передачу генома, и какова ее эволюция метаболизма.
Кто открыл
Первое открытие структуры ДНК приписывают английским биологам Джеймсу Уотсону и Френсису Крику, которые в 1953 году раскрыли особенности строения молекулы. Нашел же ее в 1869 году швейцарский врач Фридрих Мишер. Он изучал химический состав животных клеток с помощью лейкоцитов, которые массово скапливаются в гнойных поражениях.
Мишер занимался изучением способов отмывания лейкоцитов, выделял белки, когда обнаружил, что кроме них есть что-то еще. На дне посуды во время обработки образовался осадок из хлопьев. Изучив эти отложения под микроскопом, молодой врач обнаружил ядра, которые оставались после обработки соляной кислотой. Там содержалось соединение, которое Фридрих назвал нуклеином (от лат. nucleus — ядро).
Значение ДНК
В 1952 году американские генетики Альфред Херши и Марта Коулз Чейз провели серию специальных опытов, благодаря которым выяснили, что вся наследственная информация содержится как раз в дезоксирибонуклеиновой кислоте, а не белках, как было принято считать ранее. Тогда стало понятно значение ДНК в науке и началось изучение вопроса, что такое формула ДНК. Это открытие прорывом генной инженерии, Альфред и Марта навсегда вошли в историю, а их опыт получил имя эксперимент Херши — Чейз.
Видео
ЧТО ТАКОЕ ДНК?
Внимание! Информация, представленная в статье, носит ознакомительный характер. Материалы статьи не призывают к самостоятельному лечению. Только квалифицированный врач может поставить диагноз и дать рекомендации по лечению, исходя из индивидуальных особенностей конкретного пациента.
Нашли в тексте ошибку? Выделите её, нажмите Ctrl + Enter и мы всё исправим! Рассказать друзьям:sovets.net
ДНК расшифровка
ДНК (дезоксирибонуклеиновая кислота) – своеобразный чертеж жизни, сложный код, в котором заключены данные о наследственной информации. Эта сложная макромолекула способна хранить и передавать наследственную генетическую информацию из поколения в поколение.
ДНК определяет такие свойства любого живого организма как наследственность и изменчивость. Закодированная в ней информация задает всю программу развития любого живого организма. Генетически заложенные факторы предопределяют весь ход жизни человека. Вмешательство врачей или естественное воздействие внешней среды способны лишь в незначительной степени повлиять на общую выраженность отдельных генетических признаков или сказаться на развитии запрограммированных процессов.
ДНК, расшифровка кода которой имеет не только научное, но и практическое значение, позволяет врачам проводить профилактику тех болезней, к которым человек предрасположен с рождения. Зная об особенностях строения генома пациента, врач способен предсказать реакцию организма на воздействие внешней среды, спрогнозировать исход болезни и эффективность применения конкретных лекарств и т.п.
Молекулы нуклеиновой кислоты, соединенные в определенном порядке, управляют всеми процессами синтеза белков и ферментов, контролирующих обмен энергии и веществ в организме человека. Строение же белков и их функции определяются тем, из каких аминокислот они состоят. При этом важную роль играет порядок расположения этих аминокислот в молекуле белка.
Если рассматривать глубинные слои ДНК, состав ее определяют 4 типа нуклеотидов: тимидиловые (Т), адениловые (А), гуаниловые (G) и цитидиловые (C). Сама макромолекула с оболочкой хромосом достигает в длину 1 метра. Ее толщина при этом равняется всего лишь одному нанометру (одной миллиардной метра).
ДНК формула выглядит как буквенная запись последовательности нуклеотидов в цепочке. К примеру, она может иметь такой вид: AGTCATGCCAG.
ДНК была предметом исследования ученых не одно десятилетие. То, что гены представляют собой отдельные участки молекул дезоксирибонуклеиновой кислоты, установили уже в середине 20 века. Тогда же ученые убедились, что эти участки молекул отвечают за структуру белков.
На основании этого была выявлена взаимозависимость между химической структурой участков молекул ДНК и самими молекулами белков. Суть этой зависимости заключается в том, что порядок расположения ДНК в белках соответствует порядку структурных единиц ДНК (нуклеотидов) в гене.
Сделанное открытие стало революционным с точки зрения понимания основной сути ДНК. Расшифровка генетического кода позволила ученым вплотную приблизиться к основным тайнам наследственной информации человека.
Генетический код человека записывается как определенная последовательность нуклеотидов на основном носителе информации — ДНК. Расшифровка структуры этой макромолекулы в 1953 году стала серьезнейшей вехой в истории микробиологии. За вклад в данное открытие Дж.Уотсон, Ф.Крик и М.Уилкинс получили премию Нобеля.
ДНК расшифровка требует очень много времени. Это объясняется тем, что в одной молекуле дезоксирибонуклеиновой кислоты содержится огромное количество сведений, зашифрованных сложным кодом. Ядро одной клетки вмещает такое количество информации, которое могло бы заполнить миллион страниц научной энциклопедии.
Впервые прочитать геном человека в так называемом черновом варианте удалось в 2001 году, хотя полностью на завершение проекта ушло еще два дополнительных года. На проект было истрачено 300 миллионов долларов, в нем участвовало несколько научных организаций.
Полная запись генома была сделана в 2007 году. Бюджет проекта равнялся уже 1 миллиону долларов.
Сегодня процедура, называемая «ДНК-расшифровка хромосом человека» совершается на одной установке, а стоимость ее снизилась до рекордного значения за всю предыдущую историю. Она равна 50 тысячам долларов.
fb.ru
ПРОСТО и КОРОТКО о ТРАНСКРИПЦИИ ДНК
ОЧЕНЬ КОРОТКО И ПО СУТИ:
БОЛЕЕ РАЗВЕРНУТО:
ДНК- очень важная штука.
Другого источника где взять инструкции и программы жизни клетки НЕТ!
Случись что с ДНК- и клетка живой мертвец.
ИМ нельзя рисковать- оно должно быть под защитой.
По этому есть посредник: иРНК (информационое РНК)
или мРНК (матричное РНК) это одно и тоже.
иРНК — это копия сверх малой ЧАСТИ ДНК.
Но конкретной части копии которая отвечает за РЕЦЕПТ конкретного белка (последовательности аминокислот)
Но копия комплементарная:
То есть там где в ДНК последовательность АГТ на иРНК будет
УЦА (ТИМИНА нет в РНК, его заменяет УРАЦИЛ)
Видите Т- значит это ДНК
Видите У- значит это РНК
Исключение? Нет, только опечатки.
Транскрипция ДНК, рнк полимераза
РНК — это как кабель или флешка, посредник от главного компьютера/сервера к вашему компьютеру. Случись что с ней- не велика беда- снова скопируем с главного источника ДНК.
ТРАНСКРИПЦИЯ ДНК — ПЕРЕПИСЫВАНИЯ с ДНК на иРНК.
ТРАНСКРИПЦИЯ ДНК —ОГРАНИЧЕННОЕ, ЗЕРКАЛЬНОЕ, КОПИРОВАНИЕ ПОСЛЕДОВАТЕЛЬНОСТИ НУКЛЕОТИДОВ С ДНК НА иРНК.
Для дальнейшего использования как рецепт для синтеза белка.
ПРИМЕР:
там где в ДНК записано АТЦГ то в иРНК оно запишеться как:
| | | |
УАГЦ
в РНК — НЕТ Т- Тимина, вместо него У- Урацил.
Детальнее так:
Разворачиваем ДНК из спирали в отдельные цепочки их получиться две, и с той части где закодирован ПРОМОТОР-сигнальная последовательность нуклеотидов ДНК для присоединения РНК-полимеразы, начинаеться копирование(при условии отсоединения белка репрессора-тот белок который разрешит этот процесс если отсоедениться от ДНК).
НО там где в ДНК записано АТЦГ то в иРНК оно запишеться как:
| | | |
УАГЦ
в РНК — НЕТ Т- Тимина, вместо него У- Урацил.
Ну Вы поняли- просто так и всё просто быть не может.
И так на РНК клеятся НУКЛЕОТИДЫ пока РНК- полимераза не наткнётся на ТЕРМИНАТОР- последовательность НУКЛЕОТИДОВ на ДНК которая выключает РНК- полимеразу.
Что ж я максимально упростил всё как мог, упустил МНОГО деталей- но, я хочу что б вы поняли суть, а не решать кроссворды.
www.id0c.ru
Что такое ДНК и РНК в биологии?
Молекулярная биология является одним из важнейших разделов биологических наук и подразумевает детализированное изучение клеток живых организмов и их составляющих. В сферу ее исследований входит множество жизненно важных процессов, таких как рождение, дыхание, рост, смерть.
Бесценным открытием молекулярной биологии стала расшифровка генетического кода высших существ и определение способности клетки хранить и передавать генетическую информацию. Основная роль в этих процессах принадлежит нуклеиновым кислотам, которых в природе различают два вида – ДНК и РНК. Что представляют собой эти макромолекулы? Из чего они состоят и какие биологические функции выполняют?
Что такое ДНК?
ДНК расшифровывается как дезоксирибонуклеиновая кислота. Она представляет собой одну из трех макромолекул клетки (две другие – белки и рибонуклеиновая кислота), которая обеспечивает сохранение и передачу генетического кода развития и деятельности организмов. Простыми словами, ДНК – носитель генетической информации. В ее составе содержится генотип индивида, который обладает способностью к самовоспроизводству и передает информацию по наследству.
Как химическое вещество кислота была выделена из клеток еще в 1860-х годах, однако вплоть до середины XX столетия никто и не предполагал, что она способна хранить и передавать информацию.
Долгое время считалось, что эти функции выполняют белки, однако в 1953 году группа биологов сумела значительно расширить понимание сути молекулы и доказать первостепенную роль ДНК в сохранении и передаче генотипа. Находка стала открытием века, а ученые получили за свою работу Нобелевскую премию.
Из чего состоит ДНК?
ДНК является крупнейшей из биологических молекул и представляет собой четыре нуклеотида, состоящих из остатка фосфорной кислоты. В структурном отношении кислота достаточно сложная. Ее нуклеотиды соединяются между собой длинными цепями, которые объединяются попарно во вторичные структуры – двойные спирали.
ДНК имеет свойство повреждаться радиацией или различными окисляющими веществами, в силу чего в молекуле происходит процесс мутации. Функционирование кислоты напрямую зависит от ее взаимодействия с еще одной молекулой – белками. Вступая с ними во взаимосвязь в клетке, она образует вещество хроматин, внутри которого осуществляется реализация информации.
Что такое РНК?
РНК – это рибонуклеиновая кислота, содержащая в себе азотистые основания и остатки фосфорных кислот.
Существует гипотеза, что она является первой молекулой, получившей способность к самовоспроизводству еще в эпоху формирования нашей планеты – в добиологических системах. РНК и сегодня входит в геномы отдельных вирусов, выполняя в них ту роль, которую у высших существ играет ДНК.
Рибонуклеиновая кислота состоит из 4-х нуклеотидов, но вместо двойной спирали, как в ДНК, ее цепочки соединяются одинарной кривой. В нуклеотидах содержится рибоза, принимающая активное участие в обмене веществ. В зависимости от способности кодировать белок РНК делятся на матричную и некодирующие.
Первая выступает своего рода посредником в передаче закодированной информации рибосомам. Вторые не могут кодировать белки, но обладают другими возможностями – трансляцией и лигированием молекул.
Чем ДНК отличается от РНК?
По своему химическому составу кислоты очень схожи друг с другом. Обе относятся к линейным полимерам и являют собой N-гликозид, созданный из остатков пятеуглеродного сахара. Разница между ними в том, что сахарный остаток РНК – это рибоза, моносахарид из группы пентоз, легко растворяющийся в воде. Сахарный остаток ДНК – это дезоксирибоза, или производная рибозы, имеющая несколько иную структуру.
В отличие от рибозы, формирующей кольцо из 4 атомов углерода и 1 атома кислорода, в дезоксирибозе второй атом углерода замещается водородом. Еще одно отличие между ДНК и РНК заключается в их размерах – первая молекула более крупная. Кроме этого, среди четырех нуклеотидов, входящих в ДНК, один представляет собой азотистое основание под названием тимин, тогда как в РНК вместо тимина присутствует его разновидность – урацил.
www.vseznaika.org