Линии питания блока питания: Разновидности блоков питания. Выбираем блок питания

Содержание

Разновидности блоков питания. Выбираем блок питания

При подборе конфигурации системного блока пользователи уделяют недостаточное внимание подбору подходящего для них блока питания. Как правило, приобретаются блоки питания входящие в состав китайских системных блоков или по остаточному принципу, — на сдачу. Данный подход является не оправданным, так как именно на блоке питания лежит такая ответственность, как электроснабжение компонентов системы. Опыт показывает, что большинство пользователей осознают важность приобретения качественного блока питания в каждом конкретном случае достаточно поздно, когда уже приходится менять выгоревшие компоненты системы. Не следует забывать, что 75% зависаний системного блока происходит по вине либо программного обеспечения, либо установленного блока питания.

Современный рынок компьютерных комплектующих предлагает пользователям широкий выбор самых различных продуктов по доступным ценам. В первую очередь, это дешевые отечественные и китайские блоки питания.

Отличительной особенностью данных устройств является применение дешевых компонентов, сопутствующая замена многих силовых элементов обычными проводниками, отсутствие какого-либо пассивного охлаждения. Последнее обстоятельство вынуждает производителей дешевых блоков питания не заботиться о частоте вращения вентилятора, так как только работающий на максимальных частотах вращения вентилятор способен охладить данные устройства без радиаторов для рассеивания тепла. Применение упрощенных схем питания в блоках питания необратимо приводит к снижению стабильности напряжений на линиях устройства.

Любой современный блок питания для персонального компьютера должен выдавать три ключевые линии напряжения: 12 вольт, 5 вольт и 3,3 вольта. Значение той или иной линии меняется на протяжении последнего десятилетия и отражается в спецификациях ATX. Первые блоки питания удовлетворяли спецификациям ATX 1.xx, что требовало от блоков питания предоставление основной нагрузки по линии 5 вольт.

Данное обстоятельство было связано с тем, что питание центральных процессоров обеспечивалось за счет данной линии напряжения.

— картинка кликабельна —

С течением времени появились спецификации ATX 2.xx, которые требуют от блоков питания предоставления основной нагрузки по линии на 12 вольт. Связано это с тем, что все основные компоненты системного блока питаются от данной силовой линии устройства. Питание всех современных процессоров, видеокарт обеспечивается за счет данной линии. В современных блоках питания нагрузка на 5 вольтную линию ложится со стороны материнской платы, устройств хранения данных и различных приводов.

Линия напряжения на 3,3 вольта традиционно используется материнской платой для обеспечения питанием планок оперативной памяти в системном блоке. Отсутствие какой-либо стабильности по линии на 3,3 вольта необратимо ведет к подрыванию стабильности всей системы, что проявляется либо зависанием всей системы, либо синим экраном с последующей перезагрузкой.

Современные спецификации допускают некоторое отклонение напряжений на любой из трех линий. По последним данным данные отклонения не должны превышать 15%. Это достаточно существенная цифра, но материнская плата должна обеспечивать стабильность работы компонентов системы при подобных провалах или возрастаниях напряжения. Как правило, применение дорогих материнских плат от известных производителей позволяет пользователям длительное время не замечать ущербность своих блоков питания. С течением времени, конденсаторы материнских плат изживают свой срок службы, и все компоненты системы становятся достаточно чувствительными к малейшим просадкам и подъемам напряжений, особенно по линии на 3,3 вольта.

Отличительной особенностью китайских и отечественных дешевых блоков питания является феномен «качелей». Феномен «качелей» заключается в том, что при увеличении нагрузки на линию 12 вольт происходит просадка данного напряжения с параллельным возрастанием напряжения на линии 5 вольт. Обратная тенденция наблюдается при появлении нагрузки на линию пять вольт. Данное обстоятельство связано с упрощенностью схемы питания дешевых блоков питания. Это не говорит о том, что данные блоки питания нельзя эксплуатировать, — их можно эксплуатировать, но только с умом. Необходимо стараться соблюдать баланс нагрузки на обе линии напряжений — 12 и 5 вольт. Это позволит продлить срок службы вашего дешевого блока питания и продлит срок службы компонентов системы.

Наличие подобного феномена выявить достаточно просто. Для этого необходимо включить системный блок и в четырехпиновый разъем Molex найти четыре контакта, для оценки уровня напряжения на линиях 12 и 5 вольт. Красная линии и земля, — это пять вольт. Желтая линия и земля, — это двенадцать вольт. Как правило, у блока питания всегда имеется свободный один разъем Molex, — поэтому можно провести тестирование уровня напряжений напрямую с параллельной вычислительной нагрузкой.

— картинка кликабельна —

Если блок питания достаточно не уверенно держит одну из линий и можно говорить о просадке порядка 0,5 вольт от номинальных значений, — вам следует задуматься о замене блока питания.

Следует запомнить, что тестирование уровня напряжения блоков питания необходимо осуществлять исключительно мультиметром или вольтметром. Все замеры БИОСа, которые иногда представляются различными программными продуктами, годятся лишь для оценки просадки уровня напряжения, но никак не для оценки их точных значений.

Известную трудность представляет проверка

уровня напряжения на линии 3,3 вольта. Как правило, приходится ограничиваться данными представленными БИОСом материнской платы или осуществлять параллельное подключение к 24-х пиновому коннектору блока питания, подключенному к материнской плате. Распиновка данного коннектора представлена на ниже представленном рисунке:

Второй категорией блоков питания являются качественные устройства от именитых производителей. Следует понимать, что упакованный в картонную или красочную коробку блок питания не является устройством от известного производителя. Многие производители блоков питания практически не прибегают к упаковке своих решений и поставляют на продажу OEM варианты своих решений, — без какой-либо упаковки.

Современные качественные блоки питания имеют достаточный вес, который составляет от 1 кг и выше. Масса блока питания во многом зависит от его мощности. Следует обратить внимание на толщину стали качественного блока питания. У качественного устройства стенка корпуса не прогибается под нажимом пальца, в то время как на дешевых устройствах образуется ямы не подвергающиеся выпрямлению.

— картинка кликабельна —

Некоторые более дорогие блоки питания дооснащаются модульной системой организации питания, которая помогает более грамотно компоновать компоненты системы в системном блоке. Дешевые блоки питания практически не оснащаются данной системой, так как это значительно увеличивает конечную стоимость продукта.

При приобретении блока питания следует помнить, что каждый блок питания имеет активное охлаждение с помощью установленного блока питания. Многие пользователи стремятся за современными тенденциями и хотят приобрести блок питания с максимально большим вентилятором охлаждения. Во многих случаях это оправданно, особенно, когда система охлаждения доукомплектована PWM контроллером частоты вращения. Опыт показывает, что это не должно являться поводом для отказа от блоков питания с 80 мм вентиляторами охлаждения на передней стенке. Многие известные производители выпускают устройства с данной системой охлаждения, так как во время незначительных нагрузок на источник питания вентилятор шумит гораздо меньше 120 или 140 мм решений на нижней стенке устройства.

— картинка кликабельна —

Несомненным преимуществом блоков питания с вентиляторами на нижней стенке является отвод тепла от системы питания процессора. Тем не менее, следует понимать, что данный эффект не всегда реализуем, так как многие системные блоки требуют размещения блоков питания на нижней стенке. Да и достойные блоки питания с 80 мм вентилятором охлаждения на нижней стенке имеют решетки, через которые осуществляется забор горячего воздуха из зоны системы питания процессора.

Представленный краткий обзор должен помощь определиться нашим пользователям с покупкой блока питания для своего решения. Запомните, то как долго прослужит вам ваш компьютер во многом зависит от источника его питания.

5 вещей, на которые следует обращать внимание при выборе блока питания

С появлением видеокарт NVIDIA GeForce RTX 30-й серии, процессоров AMD Ryzen 5000-й серии и видеокарт серии Radeon RX 6000 мы вступили в эру еще более высокопроизводительных компьютеров. Это вызывает постепенное увеличение спроса на блоки питания высокой мощности.

В магазинах имеется множество блоков питания. Какие же из них лучше отвечают потребностям пользователей, вливающихся в новую волну апгрейда? При выборе подходящей модели следует обратить внимание на несколько факторов:


Мощность

Перед обсуждением прочих параметров следует объяснить самый базовый. Мощность, указанная в характеристиках блока питания, может отличаться от его действительной мощности. Для хорошего продукта это будет мощность при длительной работе, а для других – лишь пиковая выходная мощность, то есть выдавать ее постоянно они не смогут. На каждом блоке питания имеется этикетка с характеристиками. Также их можно прочитать на его упаковке. Из них вы сможете узнать, какую именно выходную мощность имеет та или иная модель. Далее мы рассмотрим оба типа мощности более детально.

Длительная мощность

Это максимальное значение выходной мощности, которую способен обеспечить блок питания при длительной работе, независимо от входного напряжения и температуры. Как правило, этикетка на задней панели блока питания оформляется в соответствии с правилами по электробезопасности, и на ней должна быть указана именно длительная мощность.

Пиковая мощность

Мощность блока питания, которую тот способен поддерживать в течение короткого времени (менее 10 мс) до активации защитных механизмов, называется пиковой. Как правило, она в 1,1 раза больше, чем длительная и чаще всего не указывается в таблицах характеристик и на этикетках продуктов. Например, пиковая мощность 850-ваттного блока питания будет составлять примерно 935 Вт (850 Вт х 1,1 = 935 Вт).

У некоторых блоков питания общая выходная мощность, написанная на этикетке, отличается от той, что указана в их названии или описании, поэтому обязательно перед покупкой изучите технические характеристики устройства, чтобы убедиться, что вы получите именно столько ватт, сколько вам требуется.

Безопасность

Еще одним важным аспектом блока питания являются его защитные функции, которые предотвращают повреждение устройства при возникновении внештатных ситуаций. Ниже приведены краткие описания самых популярных из них.

Защита от перегрузок по напряжению (OVP)

При нестабильной работе системы питания могут случиться скачки выходного напряжения. Если оно выйдет за безопасные пределы, блок питания будет отключен, чтобы предотвратить повреждение компонентов компьютера. После устранения внештатной ситуации его можно будет включить снова.

Допустимые диапазоны напряжений, данные в руководстве компании Intel по проектированию блоков:

Защита от перегрузок по току (OCP)

Если ток на выходных линиях превысит безопасный уровень, блок питания будет вовремя выключен, чтобы избежать повреждения компонентов компьютера. Его можно будет снова включить после устранения внештатной ситуации.

Защита от общей перегрузки (OPP)

Если общее энергопотребление компьютера превысит возможности блока питания, тот будет вовремя отключен, чтобы предотвратить поломку.

Защита от перегрева (OTP)

Если температура внутри блока питания превысит безопасный уровень, например, из-за плохого отвода тепла или сломавшегося вентилятора, то он будет вовремя отключен, чтобы предотвратить поломку. Блок питания можно будет включить вновь, когда температура опустится до приемлемой.

Защита от коротких замыканий (SCP)

При коротком замыкании выходных линий блок питания будет вовремя выключен, чтобы избежать повреждения. Его можно будет снова включить после устранения неисправности.

Конструкция шин питания и их характеристики

Блоки питания могут иметь одну или несколько выходных линий с напряжением +12 В. Оба варианта имеют свои плюсы и сферы применения. +12 В – это основное системное напряжение, которое используется и процессором, и видеокартой, и материнской платой, поэтому сила тока на такой линии будет довольно высокой. Понять, какой именно конструктивный вариант используется в том или ином блоке питания, как правило, можно из его технических характеристик.

Одиночная выходная линия

Как подразумевает название, при таком варианте имеется лишь одна выходная линия +12 В, по которой и поставляется весь ток, нужный системным компонентам. Его преимущество состоит в том, что сила тока такой линии может быть сравнительно высока. В таблице характеристик будет указана лишь одна линия +12 В с максимальной силой тока и мощностью, которые она поддерживает.

Несколько выходных линий

При таком варианте одна внутренняя шина +12 В разделяется на несколько выходных линий, причем на каждой линии имеется свое ограничение по силе тока с соответствующей защитой, и это повышает уровень электробезопасности. В характеристиках блока питания будет указано несколько выходных линий +12 В с максимальной силой тока и мощностью каждой из них. Впрочем, независимо от их числа, общая мощность внутренней шины +12 В останется неизменной. Возьмем для примера модель MPG A850GF. У нее имеется 4 выходных линии +12 В, питающие материнскую плату, процессор и видеокарту, а их общая мощность составляет 850 Вт.

Различные варианты схемотехники и защитных механизмов будут влиять на максимальную мощность блока питания. Как правило, пиковая мощность больше номинальной в 1,1 раза. При превышении этого порога активируется защита: защита от перегрузки по току или общей перегрузки. Пороговые значения защиты устанавливаются каждым производителем самостоятельно, и для блоков питания с одной выходной линией +12 В их значения практически совпадают. Для устройств с несколькими выходными линиями +12 В защита от перегрузки по току обычно более важна.


В блоках питания MSI серии MPG используется разделение внутренней шины +12 В на четыре выходных линии, и для каждой из них защита от перегрузки по току задана на уровне в 1,35 раза выше, чем ее номинал. Возьмем к примеру модель MPG A850GF. Для каждой выходной линии указана максимальная сила тока в амперах. Умножив это число на лимит перегрузки по току, мы получим максимальную пиковую мощность – столько энергии может получить подключенный к ней процессор или видеокарта. Видеокарты рекомендуется подключать к линиям с большим запасом по току (см. инструкции на нашем официальном сайте).

Уровень защиты от перегрузки по току

+12VCPU: 25A x 1.35 x 12V = 405W
+12VVGA1: 40A x 1.35 x 12V = 648W
+12VVGA2: 40A x 1.35 x 12V = 648W

Защита от общей перегрузки устанавливается на уровне в 1,35 раза выше, чем номинальная мощность блока питания. Таким образом, кратковременно выходная мощность может доходить до 1147 Вт (850 Вт x 1,35 = 1147 Вт).

Чтобы сымитировать энергопотребление компьютера при игре в разрешениях 4K и FHD, мы воспользовались игровым бенчмарком. Кроме того, мы применили тест AIDA64 + 3DMark D12X, чтобы оценить потребности системы под максимально высокой нагрузкой.

Ниже представлены компоненты, которые мы использовали в наших тестах.

Тестовая система №1

  • Материнская плата: MEG Z490 ACE
  • Процессор: Intel i9-10900K (с включенной функцией Turbo Boost)
  • Видеокарта: RTX 3090 Gaming X Trio
  • Блок питания: MPG A850GF

Тестовая система №2

  • Материнская плата: MEG X570 UNIFY
  • Процессор: AMD Ryzen™ 9 5950X (с включенной функцией Game Boost)
  • Видеокарта: RTX 3090 Gaming X Trio
  • Блок питания: MPG A850GF

По итогам игровых и стресс-тестов мы можем заключить, что среднее энергопотребление не превышает 600 Вт, а пиковое находится в безопасных пределах (для модели MPG A850GF: 850 Вт x 1,35 = 1147 Вт). Хотя компания NVIDIA официально рекомендует использовать для видеокарты RTX 3090 блок питания мощностью 750 Вт, тесты показывают, что 850-ваттный будет более оптимальным выбором.

Модульная конструкция кабелей и персонализация

Кабели блока питания могут быть фиксированными или отсоединяемыми, в последнем случае – все или некоторые из них. Преимуществами полностью модульной конструкции (при которой все кабели можно отсоединить) являются экономия места и удобство прокладки кабелей. Большинство предлагаемых на сегодняшний день блоков питания высокого класса являются полностью модульными.

Модульная конструкция, например, у продуктов MSI серии MPG, также позволяет пользователю персонализировать внешний вид блока питания путем замены кабелей. Для этого нужно лишь знать, к каким именно разъемам они подключаются.

Распиновка разъемов блоков питания MSI серии MPG.

Сертификация энергоэффективности 80 PLUS

80 Plus – это сертификация энергоэффективности (коэффициента полезного действия) блоков питания. В ней предусмотрено шесть уровней. Чем выше уровень, тем выше КПД и больше экономия энергии. Обычно для достижения лучшей энергоэффективности требуется применять более качественные материалы. Ниже указаны требования стандарта «80 Plus» разных уровней, которым должны отвечать соответствующие блоки питания.

В настоящее время большинство блоков питания высшего сегмента обладают сертификацией Gold, а самые мощные модели – Platinum и Titanium. Геймерам вполне подойдет модель стандарта Gold с полностью модульной конструкцией. Хотя модели стандартов Platinum и Titanium могут похвастать лучшим качеством и эффективностью, их цена будет довольно высока. На уровне Gold КПД остается достаточно высоким, а вот цена удовлетворит большинство пользователей.

Блоки питания MPG A850GF, MPG A750GF и MPG A650GF от MSI – это модели стандарта «80 Plus Gold» с модульной конструкцией. Разделение 12-вольтовой шины на несколько выходных линий повышает уровень электробезопасности. Выбирать конкретную модель следует на основе конфигурации и сценариев использования компьютера. В представленной ниже таблице показаны наши рекомендации по выбору блоков питания MSI для сборок с видеокартами NVIDIA GeForce RTX 30-й серии и процессорами Intel/AMD. Данные по энергопотреблению готовящихся к выходу видеокарт AMD будут предоставлены позже.

Подробную информацию вы всегда можете найти на официальном сайте MSI.
MPG A850GF https://ru.msi.com/Power-Supply/MPG-A850GF
MPG A750GF https://ru.msi.com/Power-Supply/MPG-A750GF
MPG A650GF https://ru.msi.com/Power-Supply/MPG-A650GF

ATX12VO: чем отличается новый стандарт

В 2020 году компания intel предложила новый стандарт питания для настольных ПК, который получил название ATX12VO. Что это такое и чем он отличается от привычного всем ATХ разберемся в этом материале.

ATX и ATX12VO – в чем разница?

Стандарт ATX был разработан в 1995 году и остается не только актуальным, но и практически единственным действующим стандартом пользовательского сегмента на сегодняшний день. Он регламентирует следующие параметры:

  • размеры различных форматов материнских плат и блоков питания, способы их крепления в системном блоке;
  • размеры и положение разъемов на корпусах и компьютерных комплектующих;
  • геометрию и распиновку самих разъемов;
  • принципы управления электросетью;
  • набор и параметры напряжений, подающихся от БП на материнскую плату и другие компоненты ПК;

Новый стандарт регламентирует те же самые параметры, но с другими значениями, которые кардинально отличаются от предыдущих. В этом плане его можно назвать революционным, поскольку он полностью изменяет не только систему питания компьютера, но и предполагает существенно сократить физические размеры и комплектацию отдельных узлов.

12 volt only

Именно так расшифровывается вторая часть названия стандарта – 12VO. Это значит, что новый стандарт полностью откажется от вольтажа +3,3 и +5 В. Останутся исключительно пины на 12 В, а значит блок питания получает новое название – Single Rail PSU (БП с единственным напряжением)

Подобное решение является логичным, и, если можно так выразиться, эволюционным. Современное компьютерное оборудование уже практически не использует линии 3,3 В, и избавиться от них можно было еще 10 лет назад. Отказ от линий 5 В на данный момент может быть довольно сложным, но в будущем при тотальном распространении нового стандарта, подбирать оборудование для сборки настольного ПК станет значительно проще.

10 пинов вместо 24

Размер основного разъема питания, поступающего на материнскую плату, уменьшится более чем в 2 раза. Из 24 линий на разъемах блоков питания АТХ в новых моделях останется только 10.

В новых разъемах, как уже сказано выше, не будет линий +3,3 и +5 В, а также –12 В. Также разъем покинут 3 линии СОМ, которые уже длительное время остаются невостребованными.

Разъемы выполненные по старому и новому стандартам несовместимы. Это значит, что к новейшим блокам питания не удастся подключить материнскую плату ATX, даже через переходники, как и наоборот.

В зависимости от комплектации системного блока 10-пиновый контакт может быть дополнен разъемами EPS и отдельной линией для обеспечения питания видеокарты. Эти линии также будут оснащены контактами только на 12 В.

Преимущества нового стандарта

С повсеместным внедрением нового стандарта ожидается ряд положительных изменений:

  • Отсутствие преобразователя, конвертирующего 12 В в 3,3 и 5 В существенно удешевит блоки питания. К тому же этот элемент не будет занимать место в корпусе БП, а значит можно будет либо уменьшить размер устройства, либо уделить больше внимания индивидуальной системе охлаждения.
  • В системном блоке станет значительно меньше проводов и невостребованных разъемов, которые в современных сборках приходится связывать стяжками и организовывать для порядка внутри системы и обеспечения продуктивного охлаждения.
  • Небольшие по размеру разъемы освобождают место на материнской плате, позволяя сделать ее топологию более удобной или добавить новые узлы.
  • Распределение питания материнской платой позволит реализовать новые энергосберегающие режимы, в результате десктопный компьютер станет значительно энергоэффективнее.

В чем сложности?

Переход на новую технологию или стандарт в большинстве случаев сопровождается рядом проблем и настороженно воспринимается пользователями. Со стандартом ATX12VO также не все гладко:

  • Установить новый блок питания или заменить материнскую плату в сборке на базе предыдущего стандарта не удастся. Причина – разные форматы разъемов и количество подаваемого напряжения.
  • Преобразованием напряжения +12 В в необходимый многим узлам канал +5 В будет заниматься материнская плата. Это может повлиять на ее энергоэффективность, стоимость и конечно же уровень нагрева.
  • Многие современные накопители SATA используют напряжение +5 В, а значит в новых сборках они не найдут необходимой линии питания. Для решения этой проблемы предполагается прямое их подключение к материнской платы через переходники. Будут ли они поставляться с материнской платой, или придется покупать отдельно пока неизвестно.
  • Разъемы Molex также будут поставлять оборудованию исключительно 12 В напряжения. Ранее через эти разъемы еще проходило напряжение 5 В.

Переходный период будет довольно сложный, не все производители, как и пользователи готовы к столь радикальным переменам. Ситуацию осложняет и полная несовместимость стандартов ATX и ATX12VO.

Однако уже сейчас Intel активно пропагандирует новое решение и предлагает вендорам значительные скидки на новые чипсеты. Первая пользовательская реализация стандарта ожидается с выходом очередного семейства процессоров Alder Lake и оперативной памяти DDR5. Хоть эта платформа и предусматривает исключительно стандарт ATX12VO, но в ассортименте производителей будут решения с привычными 20+4pin коннекторами для облегчения сборки и обновления системных блоков пользователей.

Покупка блока питания: 9 распространенных ошибок

Все мы знаем, что производительность компьютера зависит от частоты процессора, мощности видеокарты и объема ОЗУ. При этом в большинстве случаев, при сборке системы довольно мало внимания уделяется выбору блока питания, а иногда он покупается просто «на сдачу».

Однако, этот довольно бюджетный по сравнению с остальными компонентами узел имеет важную функцию и обеспечивает работоспособность всей системы. Поэтому следует знать основные критерии выбора БП и не допускать ошибок при его покупке.

Именно ошибкам и посвящена наша статья.

Мало мощности

Недостаток мощности блока питания – одна из самых распространенных ошибок сборки. Она может привести к перебоям в работе самого устройства. При худшем сценарии блок питания может сломаться и вывести из строя другие компоненты ПК скачком напряжения.

Подсчитать необходимую мощность БП можно на одним из многочисленных онлайн-калькуляторов или самостоятельно сложить энергопотребление всех устройств системы и добавить резервные 100 – 200 Вт.

Избыток мощности

Это вторая крайность того же вопроса, которая физически для компьютера не опасна, но имеет свои нюансы.

Покупка мощного блока питания на 1000 и более Вт может существенно ударить по бюджету. Если компьютер оснащен комплектующими среднего уровня, такая покупка совершенно не оправдана. Лучше купить подходящий по мощности блок питания, а разницу потратить на апгрейд ОЗУ, или добавить к бюджету при выборе процессора.

Второй момент заключается в эффективности. Мощный блок питания в слабой сборке будет работать при низкой нагрузке, а это значит не сможет продемонстрировать высокий КПД в соответствие с сертификацией 80 PLUS, для которой необходима хотя бы 50 % нагрузка.

Этикеткам верить не стоит

Если на товаре написаны какие-либо характеристики, не всегда они правдивы. Точнее правдивы, но зачастую обозначают не те показатели, которые нам нужны. Возьмем к примеру мощность блока питания, которая стандартно указана на его корпусе. Однако это общая мощность устройства, а современный компьютер по максимум нагружает линию 12 В. Так вот, распределение общего напряжения по линиям может существенно отличаться. У бюджетных блоков питания возможности 12-вольтной линии могут в 2 раза отличаться от заявленных в спецификации и по факту БП на 600 Вт обеспечит только 300 – 400 Вт энергии на нужды процессора, видеокарты и материнской платы. У дорогих блоков соотношение общей мощности и линий 12 в намного выгоднее.

Из двух равноценных БП выбрать более мощный

Если за одну стоимость в магазине попадается 2 блока питания, мощность которых отличается от 200 до 400 и более Вт, то заманчивым вариантом кажется более мощная модель. Однако задумайтесь, за счет чего производитель снизил цену? В большинстве случаев такие устройства оснащены бюджетными запчастями, что зачастую подразумевает под собой пульсацию напряжения, шумную работу, высокую теплоотдачу, хрупкие коннекторы и много других нежелательных факторов. Обязательно учитывайте этот момент при выборе из нескольких устройств одного ценового сегмента.

Не учесть габариты

Блок питания, помимо мощности, должен подходить и к габаритам корпуса. Сейчас довольно распространены блоки питания стандарта АТХ, размеры которых составляют 86 х 150 х 140 мм. Однако в продаже можно встретить и другие форм-факторы: SFX, SFX-L, TFX, они предназначены для компактных корпусов, например формата CUBE.

Также некоторые модели особо мощных блоков питания, например Thermaltake Smart Pro, могут иметь габариты, превосходящие стандарты. В данном случае его габариты составляют 860 х 150 х 170 мм. Учтите, что не каждый системный блок способен вместить эти лишние 3 см.

Недостаток разъемов

Несоответствие возможностей интерфейсов блока питания и потребностей компьютерных комплектующих – также довольно распространенная проблема, которой грешат бюджетные модели. Если в системе используется оборудование с низким энергопотреблением, проблему можно решить при помощи переходников, например, Molex-SATA.

Но топовые видеокарты и процессоры могут требовать наличия разъемов 6+2 PCI-E или 8+4 пин. Если блок питания не способен их предоставить, потребуется его замена.

Кстати, в сети распространены многочисленные советы, как при помощи скрепки превратить 6 пин в 8 пин. Однако следовать им мы не рекомендуем, последствия могут быть печальными.

Также проблемой может стать и недостаточная длина кабелей. Особенно актуальна эта проблема если блоки питания устанавливают в нижней части корпуса. А мы уже знаем, что любой удлинитель или переходник – это фактор риска, особенно при подключении энергоемкого оборудования: процессоров и видеокарт.

Слишком шумный

Если тишина работы компьютера является для вас важным фактором, следует при покупке БП учесть и этот фактор. Уровень шума блока питания зависит от подшипника вентилятора и его оборотов. К сожалению эти параметры в спецификации не указываются, а значит выбирая БП, следует ознакомиться с отзывами владельцев. В сети можно найти множество графиков работы системы охлаждения БП, а также прочитать о шумах, производимых автоматикой.

Тяжелый блок питания – надежный блок питания

Это распространенное заблуждение уходит корнями в 90-е годы, когда надежные комплектующие действительно весили немало. Некоторые китайские производители даже специально утяжеляли блоки питания металлическими элементами, чтоб повысить их “надежность” в глазах пользователей.

Однако в современном компьютерном оборудовании вес уже давно перестал играть какую-либо роль, и тем более являться показателем мощности и надежности. Сейчас вес блока питания определяется типом системы охлаждения. Пассивная, всегда будет тяжелее активной с таким же показателем TDP, так как оснащена радиатором с увеличенной площадью. Даже при мощности в 300W нужно будет рассеять 12 – 25W тепла в зависимости от нагрузки.

Если компьютер подключен через ИБП, можно сэкономить на БП

Бесперебойник способен уберечь компьютер от сетевых перепадов напряжения. Но за стабильность и качество электроснабжения компьютерных комплектующих отвечает именно блок питания. Наличие ИБП не убережет от короткого замыкания в системе или от быстрого выхода из строя компонентов блока питания. Таким образом, компьютерная система – это устройство, где каждый узел должен быть качественным и надежным.

Резюмируем

Выбор блока питания – довольно сложная процедура, которая помимо подсчета мощности и проверки сертификации подразумевает еще множество критериев выбора. А поскольку именно от блока питания зависит производительность и здоровье других компонентов системы, экономить на его покупке не стоит.

ATX12VO — питаемся по-новому / Хабр

Даже в постоянно изменяющемся компьютерном мире есть островки спокойствия, куда редко ступает нога улучшателей. Эти компоненты ПК живут по многократно апробированному на практике принципу «работает — не трогай». Один из примеров такого взаимовыгодного долгожительства — форм-фактор АТХ и его компоненты. Однако даже самые удачные решения иногда подвергаются ревизии. В 2020 году Intel предлагает новый вариант блока питания для настольных ПК — ATX12VO.

Всем хорошо известный стандарт АТХ был разработан Intel в 1995 году; он регламентировал как механические параметры компьютерной системы, так и схему ее электропитания: набор напряжений, подаваемых с БП на материнскую плату и другие компоненты, геометрию и распиновку разъемов питания, а также принципы управления электрической цепью. Согласно текущему стандарту, блок питания поставляет на материнскую плату постоянные напряжения 3.3 В, ±5 В и ±12 В при помощи основного 24-пинового разъема. Питание на прочие устройства и компоненты компьютера также по большей части распределяется от БП.

Стандарт ATX12VO существенно изменяет электрическую схему компьютера. 12VO означает «12 V Only», сам блок питания при этом называется «Single Rail PSU», то есть «БП с одним выходным напряжением». Сущность идеи теперь наверняка понятна: на материнскую плату подается одно-единственное напряжение +12 В с использованием укороченного 10-пинового разъема. Дальнейшим преобразованием напряжения и раздачей питания низковольтным потребителям занимается сама плата. Разъемы питания распаиваются в удобных для этого местах, скажем, для накопителей — рядом с разъемами для data-кабелей.

Сила тока рассчитывается исходя из практического норматива в 6-8 А на пин. В том случае, если подаваемой на плату мощности не хватает для нормальной работы ПК (установлен мощный процессор либо иной потребитель, применяется разгон), блок питания может предоставить дополнительные 12 В линии питания, при этом применяется модульный принцип: провода подключаются к разъемам на задней стенке БП.

Новый стандарт электропитания имеет два основных преимущества:

  1. Существенно уменьшается количество электрических проводов и разъемов в корпусе компьютера. Больше нет необходимости использовать стяжки для организации гирлянд неиспользуемых колодок — внутри находятся только нужные силовые элементы. Дополнительно, маленький основной разъем экономит место на материнской плате.
  2. Питание через материнскую плату позволяет реализовать более тонкие режимы энергопотребления и энергосбережения, в частности, Alternative Sleep Mode (ASM). Десктоп, так же как и ноутбук, в XXI веке должен быть энергоэффективным.

Блоки питания нового стандарта появятся уже в этом году, первоначально в готовых моделях ОЕМ-производителей. Далее появится поддержка ATX12VO и на уровне продаваемых отдельно материнских плат. Подробный технический документ, описывающий новый стандарт, доступен на

сайте Intel

.

Подбор блоков питания для светодиодной ленты.

Общие вопросы выбора блока питания

Для правильного подбора блока питания (БП) для системы светодиодной подсветки необходимо знать параметры подключаемой светодиодной ленты и параметры предлагаемых блоков питания.

Первый параметр ленты, влияющий на выбор БП – напряжение питания ленты. Чаще всего это 12 или 24 вольта. На какое напряжение рассчитана лента, на такое же напряжение выбирается и блок питания.

Второй параметр ленты, требующийся нам для расчета блока питания – потребляемая мощность на 1 метр ленты. Этот параметр обязательно приводится добросовестным производителем в характеристиках ленты и обычно обозначается на упаковке ленты. Мощность светодиодных лент, имеющихся в нашем ассортименте, варьируется в диапазоне от 4.2 до 31 Вт/м. Обычно, чем выше потребляемая мощность ленты, тем она ярче светит. Правда, тут вносит неоднозначность такой показатель как КПД, но на приводимый расчет блока питания он не влияет, поэтому принимать во внимание сейчас мы его не будем.

Следующий показатель – длина подключаемой к БП ленты. Тут все просто. Длина – есть длина. Измеряется в метрах.

С лентой разобрались, теперь разбираемся с блоками питания. Основные характеристики БП – выходное напряжение, максимально допустимый ток, который может длительное время отдавать блок питания в нагрузку, и выходная мощность блока питания.

С выходным напряжением все просто. Лента 12-ти вольтовая, и блок питания нужен на 12 вольт, лента на 24 вольта – блок питания берем на 24 вольта.

Следующий параметр — максимальный ток, отдаваемый блоком питания – параметр очень важный, но в стандартных расчетах для систем со светодиодной лентой используется редко. Хотя, зная его всегда можно определить выходную мощность блока питания. Нужно просто перемножить выходное напряжение в вольтах на максимальный ток в амперах и получим мощность в ваттах. Например, блок питания с выходным напряжением 12 вольт и максимальным током 5 ампер имеет выходную мощность 60 ватт.

А выходная мощность блока питания – это как раз тот параметр, который нужен для наших расчетов.

 

Для наглядности, давайте рассмотрим расчет требуемого БП на примере.

 

1.     Имеем комнату со сторонами 5х4 м. Хотим расположить ленту за карнизом по периметру комнаты. Длина периметра в таком случае составит 18 м. Соответственно, такой же длины у нас будет и лента.

2.     Выбираем ленту не самую слабую, но и не самую яркую, например, ленту  с артикулом 010346, модель RT 2-5000 24V Warm 2x (3528, 600 LED, LUX).

3.     Из обозначения видно, что это лента длиной 5 метров, с питанием 24 вольта, теплого белого цвета, двойной плотности (но не двухрядная), светодиоды 3528 (размер SMD корпуса светодиода 3.5х2.8мм), 600 светодиодов на 5 метров (или 120 светодиодов на метр).

4.     Из характеристик, имеющихся на сайте или указанных на упаковке, узнаем, что потребляемая мощность этой ленты – 48 ватт на 5 метров (9.6 Вт/м)

5.     Умножаем длину ленты на потребляемую мощность 18*9.6 = 172.8 Вт.

6.     Добавляем минимум 10-ти процентный запас по мощности, получаем 182.8 Вт.

7.     Выбираем ближайший по мощности блок питания с округлением в большую сторону. Это блок питания мощностью 200 Ватт с выходным напряжением 24 вольта (как мы помним лента у нас с питанием 24 вольта).

8.      Смотрим на сайте габариты блока питания. Артикул 013138, модель ARPV-24200 (24V, 8.3A, 200W) — 238x130x60 мм.

9.     Далее возможны варианты:

a)  нормально, габариты устраивают  – оставляем как есть;

b)  ого! куда же я его такой здоровый дену? – делим ленту на два участка, выбираем два блока питания меньшего размера и, соответственно, меньшей мощности — по 100 ватт каждый — и подключаем к каждому блоку питания по 9 метров ленты;

c)  опять не помещается — делим ленту на четыре фрагмента, ставим четыре блока питания по 50 ватт.

 

Удобнее всего монтировать оборудование, когда один блок питания устанавливается на каждые 5 или 10 метров ленты.

В рассмотренном примере мы использовали герметичный блок питания. Вы можете спросить, зачем в обычной комнате ставить герметичный блок. Ведь есть же блоки в защитном кожухе, они дешевле. Да, есть. Да, дешевле. Но они незащищены не только от влаги, но и от пыли, от попадания в них мелких предметов, домашних «животных», наконец. Все это неблагоприятно сказывается на надежности системы в целом. Кроме того, на сегодняшний момент все блоки питания для светодиодной ленты это импульсные преобразователи напряжения. Поэтому от открытых блоков питания, как бы качественно они не были сделаны, в полной тишине может быть слышен слабый «комариный» писк. Правда блоки питания в защитном кожухе бывают большей мощности, чем герметичные блоки, но и здесь есть свои подводные камни. Негерметичные блоки с мощностью более 200 ватт требуют принудительного охлаждения и снабжаются встроенными вентиляторами. Как гудит куллер системного блока компьютера у Вас под столом, слышали? Хочется Вам по ночам, при включении подсветки слышать аналогичное жужжание? В общем, делайте свой выбор.

И еще одна важная рекомендация. Монтаж блоков питания необходимо осуществлять таким образом, чтобы обеспечить циркуляцию воздуха для охлаждения блоков, а также предусмотреть возможность доступа к БП для их обслуживания или замены. Надежность применяемых блоков питания достаточно высока, но в нашей реальной жизни не исключены случаи, при которых в сети может появиться опасное для БП напряжение или пульсации, приводящие к выходу их из строя.

 

Особенности выбора блока питания для системы с регулировкой яркости или системы с многоцветной лентой.

Если в результате описанного выше расчета получилось, что мы вполне обходимся одним блоком питания и размер его нас устраивает, то никаких особенность в подборе блока для системы подсветки с управлением лентой нет.  Дальше эту статью можно не читать.

Во всех остальных случаях, нужно решить еще одну задачу. Задача заключается в следующем. Если мы хотим управлять лентой – будь то изменение яркости или изменение цвета – мы должны установить между блоком питания и лентой соответствующее устройство управления – диммер или RGB контроллер. Следовательно, если мы делим мощность на два блока питания, то должны поставить два устройства управления. Делим на четыре блока, должны поставить четыре устройства. И т.д. И все это должно срабатывать одновременно, от одного регулятора или от одного пульта. Но вопросы синхронизации – это отдельная тема и сейчас она нас не интересует. Сейчас мы занимаемся электропитанием. Можно, конечно, оставить все как есть, и поставить на каждый блок питания по отдельной управляющей коробочке, но наша цель (точнее, Ваша цель) уменьшить количество коробочек и дополнительных проводков в системе (а соответственно, уменьшить стоимость оборудования и монтажных работ).

Если мы используем 24-х вольтовую ленту, то можно прибегнуть к одной хитрости. Мы можем взять два одинаковых блока питания на напряжение 12 вольт, соединить их последовательно и получить на выходе такой системы напряжение 24 вольта и удвоенную мощность. Схема подобного соединения приведена на рисунке.

  

 

При таком включении необходимо учесть особенности конструкции блоков питания. Некоторые БП выполнены таким образом, что их металлический корпус соединен с минусовым выходом. При использовании подобных блоков в рассматриваемой схеме требуется изолировать корпуса БП друг от друга и от любых металлических поверхностей.

Некоторые «умельцы» предлагают для увеличения мощности соединять выходы блоков питания параллельно. Подавляющее большинство БП не допускают такого соединения. Это связанно с тем, что двух идеальных блоков питания с абсолютно одинаковыми выходными напряжениями не бывает. Как бы ни старался производитель, но хоть на сотые доли вольта оно будет отличаться. Напряжение на выходе блока стабилизируется специальной электронной схемой, которая  постоянно следит за выходным напряжением и в случае его отклонения от нормы, старается вернуть его в заданный диапазон. В случае соединения в параллель двух блоков  с разными напряжениями, каждый из них начнет «перетягивать одеяло» на себя. Рано или поздно это закончится выходом БП из строя. Кроме того, в момент включения такой системы один блок может мешать запуститься другому. В результате, могут появиться периодические моргания ленты при включении подсветки. Ради справедливости, следует заметить, что существуют блоки питания, допускающие параллельное соединение, но это отдельный, довольно редко встречающийся класс. Возможность такого соединения обязательно указывается в документации на блок питания.

ТОВАРЫ СВЯЗАННЫЕ СО СТАТЬЕЙ

    

ATX 12V — стандарт, версии. Что означает и что регламентирует?

ATX12V – общий стандарт для блоков питания, дополняющий спецификации ATX, касательно питания по линии 12V и не только.

Был введён в обиход со времён процессора Pentium 42000 года), так как это первый процессор, к которому подводилось 12V, а не общепринятые в те времена 5V.

Регламентирует:
  • — Минимальная сила тока по линиям 12V.
  • Качество проводов и толщина сечения.
  • — Допустимые отклонения от 12V, 5V, 3.3V.
  • Разновидности присутствующих разъёмов и их количество.
  • — Минимальный уровень КПД.

Версии стандартов:


V1.0

  • — Введён дополнительный 4-пин разъём для питания процессора, подключаемый к материнской плате, так как процессор потреблял много энергии (P4).
  • — Увеличена отдаваемая энергия по линии 12V.

V1.1

  • — Немного увеличена мощность 3.3V линии и несколько «косметических» улучшений.

V1.2

  • -Опционально убрана линия -5V за ненадобностью (раньше питала ISA разъём).

V1.3

  • — Немного увеличена мощность 12V линий.
  • — Установлен минимальный порог КПД для слабой и нормальной нагрузки.
  • — Регламентирован допустимый уровень шума
  • — Добавлены SATA разъёмы для питания.
  • — Запрещена линия -5V

V2.0

  • — Введён 24-пиновый разъём вместо 20-пинового.
  • —  6-pin AUX разъём, убрали за ненадобностью.
  • — Предписывает опционально наличие 2-х линий 12V (12V1 & 12V2).
  • — Значительно увеличена максимальная мощность, подаваемая на линии 12V.
  • — Уменьшена подаваемая мощность на линии 3.3V и 5V (перенаправлена на 12V).
  • — Обязательное наличие SATA Power разъёмов.
  • — Несколько других мелких улучшений.

V2.01

  • -Запрещена линия -5V (опять но уже во 2-й версии).

V2.1

  • — Увеличена мощность всех питающих линий.
  • — Увеличен минимальный уровень КПД.
  • — Добавлен 6-пин разъём для видеокарты, который позволяет установить видеокарту с уровнем потребления выше 75W.

V2.2

  • — Добавлен 8-pin питающий разъём для видеокарты, который добавляет 150W.

V2.3

  • — Минимальный уровень КПД вырос с 70 до 80%
  • — Были понижены требования по нагрузке на 12V линии.
  • — Регламентируется, что 12V линии должны выдавать мощность более 20A

Power Supply Line — обзор

Безопасность линий электропередач для электриков

Работники электроснабжения и линий связи — не единственные люди, которые подвергаются опасности высокого напряжения. Как коммерческий или бытовой электрик вы можете подвергнуться риску, связанному с линиями электропередач, в их худшем случае, и вам необходимо иметь общее представление о том, как реагировать. Прежде всего, всегда предполагайте, что линии электропередач находятся под напряжением. Это относится к линиям электропередач возле домов и зданий, а не только к линиям на опорах (Рисунок 8.8).

Рисунок 8.8. Поврежденные линии электропередач, которые все еще находятся под напряжением, могут вызвать искры и пожары. Легко сказать, что эта линия все еще находится под напряжением.

Не все линии электропередач под напряжением отскакивают от земли, вызывая искры или возгорание. Даже если вы можете увидеть покрытие на линии, никогда не предполагайте, что к нему можно прикасаться. Достаточно секунды контакта с линиями электропередач, чтобы вызвать травму или смерть. Помните обо всех электрических опасностях, которые мы уже рассмотрели, например о том, что электричество заставляет ваши мышцы сжиматься, что делает невозможным отрыв от контакта с током высокого напряжения.

Никогда не устанавливайте лестницу возле линий электропередач. Как электрик, вы не обязательно знаете, какие безопасные расстояния должны быть вокруг источников питания. Когда вам все же приходится работать с лестницы, держите лестницу, инструменты и все остальное, что вы несете, на расстоянии не менее 10 футов от линий электропередачи. Иногда вам может потребоваться работать выше лестницы, и именно тогда вам нужно сначала остановиться и поискать линии электропередач. Используйте корректировщика, чтобы убедиться, что вы соблюдаете безопасные расстояния от линии. Держите краны, строительные леса и оборудование с большим вылетом вдали от линий подачи, чтобы избежать случайного контакта, который может вызвать серьезные ожоги или поражение электрическим током (Рисунок 8.9).

Рисунок 8.9. Любое оборудование, которое возвышается над землей, например краны, стрелы, строительные леса или лестницы, может случайно соприкоснуться с высоковольтными линиями, если вы не примете во внимание требования к расстоянию.

Когда вы выполняете какие-либо строительные работы, держите оборудование на расстоянии не менее 10 футов от линий электропередач и 25 футов от линий опор. Не взбирайтесь и не обрезайте деревья, которые находятся рядом с линиями электропередач, и НИКОГДА не пытайтесь выбить или сбить сломанную ветку дерева, застрявшую на линии электропередачи.Может быть, это звучит легко, но совсем недавно электрик получил удар током, когда попытался оторвать сломанную ветку дерева от линии электропередачи, ведущей к дому, над которым он работал.

Энергетическая компания в районе, где я живу, периодически запускает телевизионные объявления, предупреждающие всех держаться подальше от упавших линий электропередач. Их девиз: «Никакая линия, к которой нельзя прикасаться, никогда не будет безопасной». Помните, что земля вокруг проложенной линии может находиться под напряжением, поэтому держитесь подальше от упавших линий электропередач и будьте особенно осторожны, чтобы избежать попадания металлических предметов в область, таких как уличные знаки, металлические поручни, ограждения или заборы, которые могли быть наэлектризованы.Поскольку вы не можете определить по упавшему источнику питания, подано оно или нет, крайне важно сразу же позвонить в местную коммунальную службу и сообщить о местонахождении любых обесточенных проводов. Если линия упала на вашу машину, оставайтесь в машине. Нет гарантии, что вы сможете безопасно выйти из машины, случайно не коснувшись одновременно какой-либо части автомобиля и земли (Рисунок 8.10).

Рисунок 8.10. Иногда упавшие линии электропередач кажутся безвредными и обесточенными, потому что дуги не возникают, тогда как на самом деле они подпитывают землю и любые другие металлические предметы вокруг них.

Если вам нужно где-то копать по какой-либо причине, сначала позвоните в местную службу поиска подземных коммуникаций. По закону большинство штатов требует, чтобы вы позвонили в местное коммунальное предприятие и выяснили, есть ли газовые, электрические, телефонные или другие линии коммуникаций, прежде чем копать. В прошлом году начал работу общенациональный номер 8-1-1 Call Before You Dig. Вы не можете предположить, что кабели питания проложены под землей от опоры до здания по прямой линии. Независимо от того, нужно ли вам выкопать неглубокую траншею или вырыть землю на несколько футов рядом с фундаментом здания, любой контакт с лопатой, киркой или другим оборудованием может привести к травме или смерти.

Работники связи знают, что травмы могут быть не только в линиях электропередач. Волоконно-оптические кабели становятся все более распространенными в большинстве областей. Они используются телефонными компаниями, компаниями кабельного телевидения и другими коммунальными службами для целей связи. Как и линии электропередач, эти кабели могут быть сломаны или сбиты в результате урагана или несчастного случая, но многие люди полагают, что они не пропускают достаточный ток, чтобы причинить какой-либо вред. Волоконно-оптические линии несут световые лучи, похожие на лазерные, которые могут серьезно повредить глаза, если кто-то заглянет в конец кабеля.А жилы кабеля сделаны из очень тонких стеклянных нитей, которые могут легко прорезать одежду и кожу. Волоконно-оптические кабели обычно имеют диаметр от до дюйма, с черной изоляцией и имеют внутри разноцветные пластиковые буферные трубки, выстланные стеклянной нитью, с внешней изоляцией, которая часто имеет оранжевые опознавательные полосы или маркировку.

Независимо от того, являетесь ли вы электриком или работником линии электропередач, ваша безопасность зависит от выявления потенциальных опасностей, связанных с высоким напряжением.Как линейный работник, вы в равной степени несете ответственность за защиту общества и собственности, гарантируя, что любая установка или обслуживание, которое вы выполняете, соответствуют NESC и любым другим применимым кодексам. Риск серьезной травмы или смерти слишком велик, чтобы заявлять о незнании или неосторожности при работе с высоковольтными системами, оборудованием и конструкциями (рис. 8.00).

Рисунок 8.00. Знайте факты потенциальных опасностей при работе рядом с системами высокого напряжения.

ОСНОВЫ ИСТОЧНИКА ПИТАНИЯ — Электроника с длиной волны

Теория нерегулируемого источника питания

Поскольку нерегулируемые источники питания не имеют встроенных регуляторов напряжения, они обычно предназначены для выработки определенного напряжения при определенном максимальном выходном токе нагрузки. Обычно это блочные настенные зарядные устройства, которые превращают переменный ток в небольшую струйку постоянного тока и часто используются для питания таких устройств, как бытовая электроника. Это самые распространенные адаптеры питания, которых называют «настенными бородавками».

Выходное напряжение постоянного тока зависит от внутреннего понижающего трансформатора напряжения и должно быть максимально приближено к току, необходимому для нагрузки. Обычно выходное напряжение уменьшается по мере увеличения тока, подаваемого на нагрузку.

При использовании нерегулируемого источника питания постоянного тока выходное напряжение зависит от размера нагрузки.Обычно он состоит из выпрямителя и конденсатора сглаживания, но без регулятора для стабилизации напряжения. Он может иметь цепи безопасности и лучше всего подходит для приложений, не требующих точности.

Рисунок 4: Блок-схема — нерегулируемая линейная подача

Преимущества нерегулируемых источников питания в том, что они долговечны и могут быть недорогими. Однако их лучше всего использовать, когда точность не является требованием. Они имеют остаточную пульсацию, аналогичную показанной на рисунке 3.

ПРИМЕЧАНИЕ: Wavelength не рекомендует использовать нерегулируемые источники питания с какими-либо из наших продуктов.

Теория регулируемых источников питания

Стабилизированный источник питания постоянного тока — это, по сути, нерегулируемый источник питания с добавлением регулятора напряжения. Это позволяет напряжению оставаться стабильным независимо от величины тока, потребляемого нагрузкой, при условии, что предварительно определенные пределы не превышаются.

Рисунок 5: Блок-схема — Регулируемая поставка

В регулируемых источниках питания схема непрерывно производит выборку части выходного напряжения и регулирует систему, чтобы поддерживать выходное напряжение на требуемом уровне.Во многих случаях включается дополнительная схема для обеспечения ограничений по току или напряжению, фильтрации шума и регулировки выхода.

Линейный, переключаемый или аккумуляторный?

Существует три подгруппы регулируемых источников питания: линейные, переключаемые и аккумуляторные. Из трех основных конструкций регулируемых источников питания линейная является наименее сложной системой, но переключаемое и аккумуляторное питание имеет свои преимущества.

Линейный источник питания
Линейный источник питания используется, когда наиболее важным является точное регулирование и устранение шума.Хотя они не являются наиболее эффективными источниками питания, они обеспечивают наилучшую производительность. Название происходит от того факта, что они не используют переключатель для регулирования выходного напряжения.

Линейные источники питания доступны в течение многих лет, и их использование широко распространено и надежно. Они также относительно бесшумны и коммерчески доступны. Недостатком линейных источников питания является то, что они требуют более крупных компонентов, следовательно, они больше и рассеивают больше тепла, чем импульсные источники питания. По сравнению с импульсными источниками питания и батареями они также менее эффективны, иногда демонстрируя лишь 50% эффективности.

Импульсный источник питания
Импульсный источник питания (SMPS) сложнее сконструировать, но он отличается большей универсальностью по полярности и, если он правильно спроектирован, может иметь КПД 80% или более. Хотя в них больше компонентов, они меньше и дешевле, чем линейные источники питания.

Рисунок 6: Блок-схема — Регулируемое импульсное питание

Одно из преимуществ коммутируемого режима — меньшие потери на коммутаторе.Поскольку SMPS работают на более высоких частотах, они могут излучать шум и создавать помехи для других цепей. Необходимо принять меры по подавлению помех, такие как экранирование и соблюдение протоколов компоновки.

Преимущества импульсных источников питания заключаются в том, что они, как правило, небольшие и легкие, имеют широкий диапазон входного напряжения и более высокий выходной диапазон, а также намного более эффективны, чем линейные источники питания. Однако SMPS имеет сложную схему, может загрязнять сеть переменного тока, более шумный и работает на высоких частотах, требующих уменьшения помех.

Аккумуляторный
Аккумуляторный источник питания — это третий тип источника питания, по сути, мобильный накопитель энергии. Питание от батарей производит незначительный шум, мешающий работе электроники, но теряет емкость и не обеспечивает постоянное напряжение по мере разряда батарей. В большинстве случаев, когда используются лазерные диоды, батареи — наименее эффективный метод питания оборудования. Для большинства аккумуляторов трудно подобрать правильное напряжение для нагрузки. Использование батареи, которая может превышать внутреннюю рассеиваемую мощность драйвера или контроллера, может повредить ваше устройство.

Выбор источника питания
  • При выборе блока питания необходимо учитывать несколько требований.
  • Требования к мощности нагрузки или цепи, включая
  • Функции безопасности, такие как ограничения по напряжению и току для защиты нагрузки.
  • Физический размер и эффективность.
  • Помехозащищенность системы.

Общие сведения об источниках питания переменного / постоянного тока | Статья

.

СТАТЬЯ ОБРАЗОВАНИЯ


Получайте ценные ресурсы прямо на свой почтовый ящик — рассылается раз в месяц

Мы ценим вашу конфиденциальность

Что такое блок питания?

Источник питания — это электрическое устройство, которое преобразует электрический ток, поступающий от источника питания, такого как сеть, в значения напряжения и тока, необходимые для питания нагрузки, такой как двигатель или электронное устройство.

Назначение источника питания — обеспечить нагрузку надлежащим напряжением и током. Ток должен подаваться контролируемым образом — и с точным напряжением — на широкий диапазон нагрузок, иногда одновременно, и все это без изменения входного напряжения или других подключенных устройств, влияющих на выход.

Источник питания может быть внешним, что часто встречается в таких устройствах, как ноутбуки и зарядные устройства для телефонов, или внутренним, например, в более крупных устройствах, таких как настольные компьютеры.

Источник питания может быть регулируемым или нерегулируемым. В регулируемом источнике питания изменения входного напряжения не влияют на выход. С другой стороны, в нерегулируемом источнике питания выходная мощность зависит от любых изменений на входе.

Все блоки питания объединяет то, что они берут электроэнергию от источника на входе, каким-то образом преобразуют ее и доставляют в нагрузку на выходе.

Питание на входе и выходе может быть переменным (AC) или постоянным (DC) током:

  • Постоянный ток (DC) возникает, когда ток течет в одном постоянном направлении.Обычно он поступает от батарей, солнечных элементов или преобразователей переменного / постоянного тока. Постоянный ток — предпочтительный тип питания для электронных устройств.
  • Переменный ток (AC) возникает, когда электрический ток периодически меняет свое направление. Переменный ток — это метод, используемый для доставки электроэнергии по линиям электропередачи в дома и на предприятия

Следовательно, если переменный ток — это тип питания, подаваемого в ваш дом, а постоянный ток — это тип питания, который вам нужен для зарядки телефона, вам понадобится источник питания переменного / постоянного тока для преобразования переменного напряжения, поступающего от электросети к напряжению постоянного тока, необходимому для зарядки аккумулятора вашего мобильного телефона.

Общие сведения о переменном токе (AC)

Первым шагом в разработке любого источника питания является определение входного тока. И в большинстве случаев источником входного напряжения электросети является переменный ток.

Типичная форма волны переменного тока — синусоида (см. Рисунок 1) .`

Рисунок 1: Форма сигнала переменного тока и основные параметры

Есть несколько показателей, которые необходимо учитывать при работе с блоком питания переменного тока:

  • Пиковое напряжение / ток: максимальное значение амплитуды волны может достигать
  • Частота: количество циклов, которые волна завершает в секунду.Время, необходимое для завершения одного цикла, называется периодом.
  • Среднее напряжение / ток: Среднее значение всех точек напряжения в течение одного цикла. В чисто переменном токе без наложенного постоянного напряжения это значение будет равно нулю, потому что положительная и отрицательная половины компенсируют друг друга.
  • Среднеквадратичное напряжение / ток: определяется как квадратный корень из среднего значения за один цикл квадрата мгновенного напряжения. В чистой синусоидальной волне переменного тока его значение можно рассчитать с помощью Уравнение (1) :
  • $$ V_ {PEAK} \ over \ sqrt 2 $$
  • Также может быть определена как эквивалентная мощность постоянного тока, необходимая для достижения такого же нагревающего эффекта.Несмотря на сложное определение, он широко используется в электротехнике, поскольку позволяет найти эффективное значение переменного напряжения или тока. Из-за этого его иногда обозначают как V AC .
  • Фаза: угловая разница между двумя волнами. Полный цикл синусоидальной волны делится на 360 °, начиная с 0 °, с пиками на 90 ° (положительный пик) и 270 ° (отрицательный пик) и дважды пересекая начальную точку, на 180 ° и 360 °. Если две волны изображены вместе, и одна волна достигает своего положительного пика в то же время, когда другая достигает своего отрицательного пика, тогда первая волна будет под углом 90 °, а вторая волна будет под углом 270 °; это означает, что разность фаз составляет 180 °. Считается, что эти волны находятся в противофазе, так как их значения всегда будут иметь противоположные знаки. Если разность фаз равна 0 °, мы говорим, что две волны находятся в фазе.

Переменный ток (AC) — это способ передачи электроэнергии от генерирующих объектов конечным пользователям. Он используется для транспортировки электроэнергии, потому что в процессе транспортировки электричество необходимо преобразовывать несколько раз.

Электрические генераторы вырабатывают напряжение около 40 000 В или 40 кВ.Затем это напряжение повышается до любого значения от 150 кВ до 800 кВ, чтобы снизить потери мощности при транспортировке электрического тока на большие расстояния. Когда он достигает места назначения, напряжение снижается до 4–35 кВ. Наконец, прежде чем ток достигнет отдельных пользователей, он снижается до 120 или 240 В, в зависимости от местоположения.

Все эти изменения напряжения будут либо сложными, либо очень неэффективными по сравнению с постоянным током (DC), потому что линейные трансформаторы зависят от колебаний напряжения для передачи и преобразования электрической энергии, поэтому они могут работать только с переменным током (AC).

Линейный источник питания переменного / постоянного тока в сравнении с импульсным

Линейный источник питания переменного / постоянного тока

Линейный источник питания переменного / постоянного тока имеет простую конструкцию.

При использовании трансформатора входное напряжение переменного тока (AC) снижается до значения, более подходящего для предполагаемого применения. Затем пониженное переменное напряжение выпрямляется и превращается в напряжение постоянного тока (DC), которое фильтруется для дальнейшего улучшения качества формы сигнала (Рисунок 2) .

Рисунок 2: Блок-схема линейного источника переменного / постоянного тока

Традиционная конструкция линейного источника питания переменного / постоянного тока развивалась с годами, улучшаясь с точки зрения эффективности, диапазона мощности и размера, но эта конструкция имеет некоторые существенные недостатки, которые ограничивают ее интеграцию.

Огромным ограничением линейного источника питания переменного / постоянного тока является размер трансформатора. Поскольку входное напряжение преобразуется на входе, необходимый трансформатор должен быть очень большим и, следовательно, очень тяжелым.

На низких частотах (например, 50 Гц) необходимы большие значения индуктивности для передачи большого количества энергии от первичной обмотки ко вторичной. Это требует больших сердечников трансформатора, что делает миниатюризацию этих источников питания практически невозможной.

Еще одним ограничением линейных источников питания переменного / постоянного тока является регулировка высокого напряжения.

В линейном блоке питания переменного / постоянного тока используются линейные регуляторы для поддержания постоянного напряжения на выходе. Эти линейные регуляторы рассеивают лишнюю энергию в виде тепла.Для малой мощности особых проблем не представляет. Однако для высокой мощности тепло, которое должен рассеивать регулятор для поддержания постоянного выходного напряжения, очень велико и потребует добавления очень больших радиаторов.

Импульсный источник питания переменного / постоянного тока

Новая методология проектирования была разработана для решения многих проблем, связанных с проектированием линейных или традиционных источников питания переменного / постоянного тока, включая размер трансформатора и регулировку напряжения.

Импульсные источники питания теперь возможны благодаря развитию полупроводниковой технологии, особенно благодаря созданию мощных полевых МОП-транзисторов, которые могут очень быстро и эффективно включаться и выключаться даже при больших напряжениях и токах.

Импульсный источник питания переменного / постоянного тока позволяет создавать более эффективные преобразователи мощности, которые больше не рассеивают избыточную мощность.

Источники питания

AC / DC, в которых используются импульсные преобразователи мощности, называются импульсными источниками питания. Импульсные источники питания переменного / постоянного тока имеют несколько более сложный метод преобразования переменного тока в постоянный.

В импульсных источниках питания переменного тока входное напряжение больше не снижается; скорее, он выпрямляется и фильтруется на входе.Затем постоянное напряжение проходит через прерыватель, который преобразует напряжение в последовательность высокочастотных импульсов. Наконец, волна проходит через другой выпрямитель и фильтр, который преобразует ее обратно в постоянный ток (DC) и устраняет любую оставшуюся составляющую переменного тока (AC), которая может присутствовать до достижения выхода (см. Рисунок 3) .

При работе на высоких частотах катушка индуктивности трансформатора может передавать больше мощности, не достигая насыщения, что означает, что сердечник может становиться все меньше и меньше.Следовательно, трансформатор, используемый для переключения источников питания переменного / постоянного тока для уменьшения амплитуды напряжения до заданного значения, может составлять часть размера трансформатора, необходимого для линейного источника питания переменного / постоянного тока.

Рисунок 3: Блок-схема импульсного источника питания переменного / постоянного тока

Как и следовало ожидать, этот новый метод проектирования имеет некоторые недостатки.

Импульсные преобразователи мощности переменного / постоянного тока могут создавать в системе значительный уровень шума, который необходимо устранить, чтобы исключить его на выходе.Это создает потребность в более сложных схемах управления, что, в свою очередь, усложняет конструкцию. Тем не менее, эти фильтры состоят из компонентов, которые можно легко интегрировать, поэтому они не оказывают существенного влияния на размер блока питания.

Меньшие трансформаторы и повышенная эффективность регуляторов напряжения в импульсных источниках питания переменного / постоянного тока — вот причина, по которой теперь мы можем преобразовывать напряжение переменного тока 220 В ¬RMS в напряжение 5 В постоянного тока с помощью преобразователя питания, который может поместиться у вас на ладони.

Таблица 1 суммирует различия между линейными и импульсными источниками питания переменного / постоянного тока.

Транзисторы
Линейный источник питания переменного / постоянного тока Импульсный источник питания переменного / постоянного тока
Размер и вес Необходимы большие трансформаторы, что увеличивает их габариты и вес Более высокие частоты позволяют при необходимости использовать трансформаторы гораздо меньшего размера.
КПД Если не регулировать, потери в трансформаторе являются единственной существенной причиной потери эффективности.В случае регулирования приложения с большой мощностью будут иметь решающее влияние на эффективность. обладают небольшими коммутационными потерями, поскольку действуют как малые сопротивления. Это обеспечивает эффективных мощных приложений .
Шум Нерегулируемые источники питания могут иметь значительный шум, вызванный пульсациями напряжения, но регулируемые линейные источники питания постоянного тока переменного тока могут иметь чрезвычайно низкий уровень шума. Вот почему они используются в медицинских приложениях. Когда транзисторы переключаются очень быстро, они создают шум в цепи. Однако это можно либо отфильтровать, либо частоту переключения можно сделать чрезвычайно высокой, выше предела человеческого слуха, для аудиоприложений
Сложность Линейный источник питания переменного / постоянного тока, как правило, имеет меньше компонентов и более простые схемы, чем импульсный источник питания переменного / постоянного тока. Дополнительный шум, создаваемый трансформаторами, вынуждает добавлять большие сложные фильтры, а также схемы управления и регулирования для преобразователей.

Таблица 1: Линейные и импульсные источники питания

Сравнение однофазных и трехфазных источников питания

Источник питания переменного тока может быть однофазным или трехфазным:

  • Трехфазный источник питания состоит из трех проводников, называемых линиями, каждая из которых несет переменный ток (AC) той же частоты и амплитуды напряжения, но с относительной разностью фаз 120 °, или одной трети цикл (см. рисунок 4) .Эти системы являются наиболее эффективными при передаче большого количества энергии и поэтому используются для доставки электроэнергии от генерирующих объектов в дома и на предприятия по всему миру.
  • Однофазный источник питания является предпочтительным методом подачи тока в отдельные дома или офисы, чтобы равномерно распределять нагрузку между линиями. В этом случае ток течет от линии питания через нагрузку, а затем обратно через нейтральный провод. Этот тип источника питания используется в большинстве установок, за исключением крупных промышленных или коммерческих зданий.Однофазные системы не могут передавать столько энергии на нагрузки и более подвержены сбоям питания, но однофазное питание также позволяет использовать гораздо более простые сети и устройства.

Рисунок 4: Форма кривой переменного тока трехфазного источника питания

Существует две конфигурации для передачи энергии через трехфазный источник питания: конфигурация треугольника $ (\ Delta) $ и конфигурация звезды (Y), также называемые конфигурациями треугольника и звезды, соответственно.

Основное различие между этими двумя конфигурациями заключается в возможности добавления нейтрального провода (см. Рисунок 5) .

Соединения

треугольником обеспечивают большую надежность, но соединения типа Y могут подавать два разных напряжения: фазное напряжение, которое является однофазным напряжением, подаваемым в дома, и линейное напряжение для питания больших нагрузок. Соотношение между фазным напряжением (или фазным током) и линейным напряжением (или линейным током) в конфигурации Y заключается в том, что амплитуда линейного напряжения (или тока) в √3 раз больше, чем амплитуда фазы.

Поскольку стандартная система распределения электроэнергии должна обеспечивать питанием как трехфазные, так и однофазные системы, большинство сетей распределения электроэнергии имеют три линии и нейтраль.Таким образом, и дома, и промышленное оборудование могут быть снабжены одной и той же линией электропередачи. Следовательно, конфигурация Y наиболее часто используется для распределения мощности, тогда как конфигурация треугольника обычно используется для питания трехфазных нагрузок, таких как большие электродвигатели.

Рисунок 5: Трехфазные конфигурации Y и треугольника

Напряжение, при котором электросеть поставляет однофазную электроэнергию своим пользователям, имеет различные значения в зависимости от географического положения.Вот почему очень важно проверять диапазон входного напряжения источника питания перед его покупкой или использованием, чтобы убедиться, что он предназначен для работы в электросети вашей страны. В противном случае вы можете повредить блок питания или подключенное к нему устройство.

В таблице 2 сравниваются напряжения в сетях в разных регионах мира.

Действующее значение (переменный ток) Напряжение Пиковое напряжение Частота Область
230 В 310V 50 Гц Европа, Африка, Азия, Австралия, Новая Зеландия и Южная Америка
120 В 170V 60 Гц Северная Америка
100 В 141V 50 Гц / 60 Гц Япония *

* Япония имеет две частоты в национальной сети из-за того, что она была электрифицирована в конце 19 века. В западном городе Осака поставщики электроэнергии купили генераторы 60 Гц в Соединенных Штатах, а в Токио, который находится на востоке Японии, они купили немецкие генераторы 50 Гц. Обе стороны отказались изменить свою частоту, и по сей день в Японии все еще есть две частоты: 50 Гц на востоке и 60 Гц на западе.

Как упоминалось ранее, трехфазное питание используется не только для транспортировки, но также для питания больших нагрузок, таких как электродвигатели или зарядки больших аккумуляторов. Это связано с тем, что параллельное приложение мощности в трехфазных системах может передавать гораздо больше энергии нагрузке и может делать это более равномерно из-за перекрытия трех фаз (см. Рисунок 6) .

Рисунок 6: Передача энергии в однофазных (слева) и трехфазных (справа) системах

Например, при зарядке электромобиля (EV) количество энергии, которое вы можете передать аккумулятору, определяет, насколько быстро он заряжается.

Однофазные зарядные устройства подключаются к сети переменного тока (AC) и преобразуются в постоянный ток (DC) внутренним силовым преобразователем переменного / постоянного тока автомобиля (также называемым бортовым зарядным устройством). Мощность этих зарядных устройств ограничена сетью и розеткой переменного тока.

Ограничение варьируется от страны к стране, но обычно составляет менее 7 кВт для розетки на 32 А (в ЕС 220 x 32 А = 7 кВт). С другой стороны, трехфазные источники питания преобразуют мощность из переменного в постоянный внешне и могут передавать более 120 кВт на батарею, обеспечивая сверхбыструю зарядку.

Сводка

Источники питания переменного / постоянного тока есть повсюду. Основная задача источника питания переменного / постоянного тока — преобразовать переменный ток (AC) в стабильное постоянное напряжение (DC), которое затем можно использовать для питания различных электрических устройств.

Переменный ток используется для транспортировки электроэнергии по всей электрической сети от генераторов до конечных потребителей. Цепь переменного тока (AC) может быть сконфигурирована как однофазная или трехфазная система. Однофазные системы проще и могут обеспечивать мощность, достаточную для питания всего дома, но трехфазные системы могут обеспечивать гораздо больше мощности более стабильным образом, поэтому они часто используются для питания промышленных приложений.

Разработка эффективных источников питания переменного / постоянного тока — непростая задача, поскольку на текущих рынках требуются мощные, чрезвычайно эффективные и миниатюрные источники питания, способные поддерживать эффективность в широком диапазоне нагрузок.

Способы проектирования источников питания переменного / постоянного тока со временем изменились. Линейные источники питания переменного / постоянного тока ограничены по размеру и эффективности, поскольку они работают на низких частотах и ​​регулируют выходную температуру, рассеивая избыточную энергию в виде тепла. Напротив, импульсные источники питания стали чрезвычайно популярными, поскольку в них используются импульсные регуляторы для преобразования переменного тока в постоянный. Импульсные блоки питания работают на более высоких частотах и ​​преобразуют электроэнергию намного эффективнее, чем предыдущие разработки, что позволило создавать мощные блоки питания переменного / постоянного тока размером с ладонь.

_________________________

Вам это показалось интересным? Получайте ценные ресурсы прямо на свой почтовый ящик — рассылайте их раз в месяц!

Статьи по теме

Чему о синхронных выпрямителях не говорят в школе — Избранные темы из реальных проектов

Осуществление продления линий электроснабжения до Синая, Египет

Во время недавней встречи с премьер-министром Египта Мостафой Камалем Мадбули и министром энергетики и возобновляемых источников энергии Мохамедом Шакером президент Абдель Фаттах ас-Сиси призвал к ускорению реализации реализуемых проектов по продлению ЛЭП до Синая.

Рассматриваемые проекты соединят электрическую сеть на Синае с Единой электрической сетью Египта (EEUN) для передачи электроэнергии, необходимой для удовлетворения потребностей интегрированного национального проекта по развитию полуострова.

В своем заявлении пресс-секретарь президента Бассам Ради сказал, что на встрече был обсужден ряд проектов, реализуемых Министерством энергетики по всей стране в рамках президентской инициативы «Достойная жизнь» по развитию деревень.

Эль-Сиси сказал, что все технические и строительные работы, связанные с Инициативой «Достойная жизнь», должны проводиться с помощью крупных консалтинговых фирм, чтобы обеспечить соответствие уровней производительности и реализации современным стандартам для всех секторов и этапы инициативы.

Другой проект, обсужденный на встрече

Наряду с проектами по продлению линий электроснабжения до Синая, на встрече были также рассмотрены последние события, связанные с атомной электростанцией Эль-Дабаа, в дополнение к проектам энергосоединения с соседними странами , включая Ливию.

Также читайте: Сотрудничество для разработки пилотного проекта по экологически чистому водороду в Египте

Также была рассмотрена Национальная водородная стратегия, нацеленная на использование водорода для хранения возобновляемой энергии и в качестве топлива для транспорта, а также приняты меры по выполнению исполнительных процедур по модернизации существующая электроэнергетическая инфраструктура в рамках первой фазы национального проекта по повышению качества жизни в сельской местности.

Кроме того, на встрече также обсуждались вопросы сотрудничества с рядом африканских стран в области плавучих электростанций (ГЭС), которые направлены на обеспечение быстрого снабжения электроэнергией участвующих стран.

Если у вас есть замечание или дополнительная информация по этому сообщению, поделитесь с нами в разделе комментариев ниже

Принципиальная схема. Красная линия обозначает линии электропитания …

Обработка свежих фруктов после уборки урожая является потенциальным источником синяков и повреждений, которые имеют серьезные последствия для качества и товарности фруктов. За последние 30 лет были разработаны различные типы устройств для регистрации ударов (также называемые электронными фруктами или псевдофруктами) с целью измерения ударов, испытываемых фруктами во время послеуборочных операций.Целью этого исследования было разработать и протестировать новую беспроводную измерительную сферу для изучения критических точек на линии упаковки цитрусовых путем измерения ударов фруктов в режиме реального времени. В основе некоммерческого устройства лежал сенсорный узел MEMS (микроэлектромеханическая система) с диапазоном чувствительности от ± 1 × g до ± 400 × g (g = 9,8 мс²), память из сегнетоэлектрического RAM (FRAM). , радиочастотный (RF) передатчик, микроконтроллер и литиевая батарея емкостью 75 мАч. Сенсорный узел был помещен в пластиковый эллипсовидный футляр общим весом 100 г, представляющий мандарин «Tardivo di Ciaculli».Приемник FR позволял передавать измеренные данные в реальном времени. Испытания проводились на упаковочной линии Consorzio del Mandarino Tardivo di Ciaculli (Палермо, Италия). Значения общего ускорения, представляющие напряжения, испытываемые фруктами в упаковочной линии, были изучены с использованием модели компонента дисперсии. Результаты показали, что общее ускорение оставалось ниже 20 × g в большинстве измерений, но значительно более высокие значения, до 80 × g, были получены между щеточной и восковой машинами.В частности, восковая эпиляция была определена как наиболее важная операция с учетом воздействия, передаваемого на плоды. Наша система доказала свою эффективность для немедленной онлайн-оценки ускорения, испытываемого фруктами, что позволяет оперативно вмешиваться, чтобы гарантировать качество фруктов в послеуборочных операциях. Ключевые слова: Ускорение, Повреждение, Инструментальная сфера, Мандарин, Послеуборочный. Ключевые слова: ускорение, повреждение, инструментальная сфера, мандарин, послеуборочная обработка. Новая сфера с беспроводными измерительными приборами была разработана и протестирована для изучения критических точек на линии упаковки фруктов.Ключевые слова: Ускорение, Повреждение, Инструментальная сфера, Мандарин, Послеуборочный. Общее ускорение, испытываемое плодами, было изучено с использованием модели компонентов дисперсии. Ключевые слова: Ускорение, Повреждение, Инструментальная сфера, Мандарин, Послеуборочный. Система доказала свою эффективность при онлайн-оценке ускорений, испытываемых фруктами. Ключевые слова: Ускорение, Повреждение, Инструментальная сфера, Мандарин, Послеуборочный.

Общие сведения о спросе и предложении электроэнергии

Сколько способов вы используете электроэнергию каждый день? Вы включаете свет. Вы можете зарядить свой телефон. Может, ты приготовишь еду. Вы даже можете путешествовать на электромобиле или поезде!

Электроэнергия — важная часть жизни большинства людей. Но как поставщики электроэнергии убедиться, что ее хватит на всех? Давайте узнаем больше о том, как предложение соответствует спросу.

Что такое электроснабжение?

Откуда берется электричество? И как он передвигается? Это ключевые вопросы для понимания электроснабжения.

Электростанции вырабатывают электроэнергию.Затем он проходит через электрическую сеть . Эта сложная сеть обеспечивает электричеством дома, школы и предприятия.

Крупные линии электропередачи несут электричество. Они проходят от электростанций до трансформаторных подстанций . Эти устройства повышают напряжение , так что электричество может перемещаться на большие расстояния. Возле домов другие трансформаторные подстанции понижают напряжение. Распределительные линии меньшего размера поставляют потребителям электроэнергию более низкого напряжения.

Производство, передача и распределение электроэнергии (Давайте поговорим о науке с использованием изображения, сделанного mathisworks через iStockphoto). Иллюстрация — текстовая версия

Электростанции, использующие энергию гидроэнергетики, ископаемого топлива, ветра и солнца, передают электроэнергию через трансформаторные подстанции в предприятия, школы и дома.

Предложение электроэнергии должно соответствовать спросу. Но спрос меняется в течение дня. При высоком спросе поставщикам необходимо производить больше электроэнергии.И им нужно производить меньше при низком спросе.

Другими словами, поставщикам необходимо избегать дефицита и избытка предложения. Управлять взлетами и падениями производства электроэнергии непросто!

Недостаточное энергоснабжение случается, когда поставщики не вырабатывают достаточно электроэнергии. Это может вызвать такие проблемы, как отключение электроэнергии и отключение электроэнергии.

Избыточное предложение происходит, когда поставщики вырабатывают слишком много электроэнергии. Иногда они могут продать эту дополнительную энергию. В противном случае он пойдет зря.Это потому, что электричество нельзя хранить. Его можно преобразовать только в другие формы энергии. И при необходимости ее можно преобразовать в электрическую энергию. Например, гигантские батареи могут преобразовывать электричество в химическую энергию и обратно.

Поставщики вырабатывают электроэнергию с использованием различных энергоресурсов. Некоторые ресурсы возобновимы. Остальные не подлежат возобновлению.

Возобновляемые ресурсы включают ветер, солнечный свет и движущуюся воду. Электрическая энергия, генерируемая солнечным светом, называется солнечной энергией . Электроэнергия, вырабатываемая движущейся водой, называется гидроэлектричеством .

Невозобновляемые ресурсы включают ядерную энергию и ископаемое топливо. Ископаемое топливо при сжигании выделяет много парниковых газов.

Возобновляемые ресурсы обеспечивают чистую электроэнергию. Но у многих из них прерывистый . Это означает, что они не работают все время. Ветер дует не всегда. Солнце светит не всегда.

Что такое спрос на электроэнергию?

Спрос на электроэнергию варьируется.Он может меняться в течение дня, недели или года. Утром и вечером люди потребляют много электроэнергии. Они тратят меньше в школе или на работе. По выходным они тоже употребляют меньше. Летом кондиционеры работают намного чаще. Обогреватели зимой работают намного больше. Оба они работают намного меньше весной и осенью.

Обычно поставщики измеряют спрос за 15-минутные периоды.

Пик спроса описывает периоды наибольшего потребления электроэнергии. Обычно это происходит утром и вечером. Когда они встают, люди расходуют много электроэнергии. Они включают свет. Они включают отопление или кондиционер. Они принимают душ. Готовят завтрак. Люди также потребляют много электроэнергии, когда возвращаются домой из школы или с работы. Они снова включают свет. Они включают отопление или кондиционер. Готовят ужин. Они включают телевизор или другие устройства.

Графики использования энергии могут помочь вам понять спрос на электроэнергию. Большие всплески вверх показывают пик спроса.

Эти графики показывают типичные потребности в энергии летом и зимой. Летом бывает один пик ближе к вечеру и ранним вечером. Зимой бывает два пика — один утром и один вечером (Источник: Let’s Talk Science на основе изображения Vencorp через Всемирную ядерную ассоциацию).

Знаете ли вы?

Использование электроэнергии в часы пик может быть намного дороже. Он может составлять от 30% до 70% счета за электроэнергию в вашем доме!

Как электрические системы уравновешивают спрос и предложение?

Поставщики предсказывают , сколько электроэнергии им необходимо произвести в определенный момент времени. Исторические записи позволяют им увидеть, каков был спрос в аналогичные времена в прошлом. Продвинутые компьютерные модели помогают интерпретировать информацию.

Свет в вашем доме может потреблять мало энергии. Но могут одновременно зажигать свет тысячи людей. Это может привести к огромному спросу на электроэнергию! Вся эта электрическая энергия должна откуда-то поступать.

Знаете ли вы?

Smart Grids может сделать электрические системы более эффективными. Они автоматически реагируют на локальные изменения в использовании энергии.

Smart Grid использует центральный центр управления для направления электричества туда, где оно необходимо (Источник: chombosan через iStockphoto).

Конечно, поставщики могут производить больше электроэнергии при высоком спросе. А когда спрос падает, они могут вернуться к сокращению производства. Но производство большего количества электроэнергии часто означает использование большего количества ископаемого топлива. Вы не можете просто включить солнце или ветер, когда захотите!

Но что, если бы вы могли хранить дополнительную энергию, генерируемую в непиковые часы? Это возможно благодаря технологиям хранения энергии.Энергия может быть высвобождена при повышении спроса. Это делает систему электроснабжения более гибкой. Это также позволяет избежать использования невозобновляемых ресурсов при высоком спросе!

Анатомия блока питания (БП)

Каждый настольный ПК, консоль или ноутбук имеет один из них. Он не увеличивает частоту кадров и не приводит к выбросу криптовалюты; в нем нет миллиардов транзисторов, и он не сделан с использованием новейших полупроводниковых технологических узлов. Звучит скучно, правда? Нисколько! Это очень важно, потому что без него наши компьютеры ничего бы не сделали.

Блоки питания

не бросаются в заголовки, как новейшие процессоры, но они представляют собой потрясающие технологии. Итак, давайте наденем халаты, маски и перчатки и откроем скромный блок питания, разбив его различные части и посмотрим, что делает каждый из них.

Анатомия компьютерного оборудования TechSpot, серия

У вас может быть настольный компьютер на работе, в школе или дома. Вы можете использовать его для расчета налоговых деклараций или поиграть в новейшие игры; возможно, вы даже собираете и настраиваете компьютеры.Но насколько хорошо вы знаете компоненты, из которых состоит ПК?

Как называется игра?

Многие компоненты компьютера имеют названия, требующие некоторых технических знаний, чтобы точно понять, что он делает (например, твердотельный накопитель), но в случае блока питания это довольно очевидно. Это единица. Он подает питание!

Поскольку мы не можем просто отряхнуть руки и гордо сказать «статья сделана» с таким заявлением, нам лучше начать с одного.Мы используем Cooler Master G650M — это довольно общий дизайн, со спецификациями, которые можно найти в десятках подобных, но он обладает одной особенностью, которая есть не в каждом блоке питания.

Этот блок питания стандартного размера, мы подразумеваем, что он соответствует форм-фактору ATX 12V v2. 31, поэтому он помещается во многих компьютерных корпусах.

Но есть и другие форм-факторы: для небольших корпусов или уникальные для конкретных производителей. Не каждый блок соответствует точным размерам, установленным стандартными форм-факторами, они могут быть одинаковой ширины и высоты, но могут быть длиннее или короче.

Блок питания модели Cisco — специально разработан для серверов, устанавливаемых в стойку

Они также обычно обозначаются максимальной мощностью, которую они могут выдать; в случае Cooler Master он может обеспечить до 650 Вт электроэнергии. Мы увидим, что это на самом деле означает, в этой статье, но вы можете получить блоки питания, которые выдают лишь небольшое количество ватт, поскольку не все, что связано с компьютером, требует для работы сотни ватт. Однако большинство настольных ПК нормально работают в диапазоне от 400 до 600 Вт.

блоков питания, подобных этому, помещаются в металлический корпус, обычно черный или металлический, поэтому они могут быть тяжелыми. У ноутбуков почти всегда есть блок питания, который находится снаружи компьютера и почти всегда пластиковый, но внутренняя часть очень похожа на то, что мы увидим в этом.

Большинство блоков питания для настольных ПК поставляются с переключателем для отключения электропитания и вентилятором, чтобы все было хорошо и прохладно, но не все (или должны). Не у всех из них будет металлический корпус с дырками — они редко бывают у серверов.

Но, как вы можете видеть на картинке выше, в нашем примере мы уже использовали отвертку, так что давайте снимем крышку и запрыгнем внутрь.

Я снова в черном

Прежде чем мы начнем рыться во внутренностях блока питания, давайте задумаемся, зачем он вообще нужен. Почему мы не можем подключить компьютер напрямую к розетке? Ответ заключается в том, что современные компьютерные компоненты ожидают, что электрическая энергия будет подаваться в совершенно иной форме, чем та, которая предоставляется розеткой.

На приведенном ниже графике показано, каким должно быть электричество в сети (США = синяя и зеленая линии; Великобритания = красная линия). Ось x показывает время в миллисекундах, а ось y показывает напряжение в вольт . Лучший способ думать о напряжении — это мера разницы энергий между двумя точками.

Если напряжение приложено к проводящему материалу (например, к отрезку металлической проволоки), разница в энергии заставит электроны в материале перетекать с более высокого уровня энергии на более низкий.Это один из строительных блоков атомов, из которых состоит материал, а у металлов лотов и электронов могут свободно перемещаться. Этот поток электронов называется током и измеряется в ампер .

Хорошая аналогия для техно-говорящих: электричество можно сравнить с водой в шланге: напряжение сродни давлению, которое вы используете, скорость потока воды — это ток, а также любые ограничения в трубе. действует так же, как электрическое сопротивление.

Мы видим, что электрическая сеть меняется со временем, и это известно как источник напряжения переменного тока , или просто переменного тока, для краткости. В США сетевое напряжение меняется 60 раз в секунду, достигая пика в 340 или 170 В, в зависимости от местоположения и источника питания. Великобритания достигает немного более низкого пика и тоже меняется немного медленнее. Почти во всех странах мира есть такие напряжения в розетках, и лишь в некоторых из них пиковое напряжение ниже или выше.

Потребность в блоке питания заключается в том, что компьютеры не работают с переменным током: им нужно постоянное напряжение, которое никогда не меняется, и оно также должно быть на , что намного ниже уровня . При тех же масштабах графика это выглядит примерно так:

Он настолько ниже, что его почти не видно, но требования современного компьютера не к одному постоянному напряжению, а к четырем , а именно +12 В, -12 В, +5 В и +3,3 В. И поскольку эти значения постоянны, они называются постоянный ток, или, для краткости, DC.Итак, большая часть того, что делает блок питания, — это преобразование переменного тока в постоянный (например, гитары . ..). Пора открыть прибор и посмотреть, как он это делает!

… большая часть того, что делает блок питания, — это преобразование переменного тока в постоянный (подскажите гитары …). Пора открыть прибор и посмотреть, как он это делает!

На этом этапе мы должны предупредить вас о , а не о , попробуйте это, если вы не знаете, что делаете. Возиться с внутренними частями блока питания может быть очень опасно. Внутри каждого блока есть компоненты, которые хранят электрическую энергию, а некоторые хранят и .

Компоновка этого блока питания похожа на многие другие, и хотя производитель и модель различных деталей, используемых внутри, будут отличаться, в основном они делают одно и то же.

Подключение сетевой розетки к блоку питания находится в верхнем левом углу рисунка, и источник питания, по существу, движется по часовой стрелке вокруг рисунка, пока не достигнет выхода блока питания (большой пучок цветных проводов, нижний левый угол).

Если мы перевернем печатную плату, мы увидим, что по сравнению с соединениями на материнской плате они широкие и глубокие — они предназначены для протекания через них большого тока.Что-то еще, что сразу бросается в глаза, — это большая пропасть, идущая посередине, как река, пересекающая путь в поле.

Это подчеркивает тот факт, что все блоки питания имеют две четко определенные секции: первичная и вторичная . Первый заключается в настройке входного напряжения так, чтобы его можно было эффективно изменить с уровня сетевого питания; во втором — все об этом изменении и последующих процессах.

Он ловкий оператор

Самое первое, что блок питания делает с электросетью, — это не переключение его с переменного на постоянный или падение напряжения — вместо этого все сводится к сглаживанию входного напряжения.Поскольку у нас есть много электрических устройств в наших домах, офисах и на работе, которые включаются и выключаются, а также излучают электромагнитные сигналы, переменный переменный ток часто бывает неровным и со случайными всплесками (длина колебаний также не постоянна. ). Это не только усложняет настройку блока питания в сети, но и может повредить некоторые компоненты внутри него.

Этот блок питания имеет два каскада так называемых переходных фильтров , первый из которых подключается непосредственно к входному разъему с использованием 3 компонентов, называемых конденсаторами , для выполнения этой работы.Думайте об этом как о лежачем полицейском при резких изменениях входного напряжения.

Второй этап фильтрации в этом БП более сложный, но по сути делает то же самое.

Желтые блоки — это скорее конденсаторы, а зеленые кольца, обернутые медным проводом, — это катушки индуктивности (хотя при таком использовании их обычно называют дросселями ). Индукторы накапливают электрическую энергию в магнитном поле, но это поле также «отталкивает» напряжение, поставляющее энергию, поэтому внезапный всплеск напряжения приводит к внезапному откату от магнитного поля, чтобы подавить его.

Два маленьких синих диска — это еще больше конденсаторов, а прямо под ними (спрятанный под черной пластиковой крышкой) находится металлооксидный варистор (MOV). Они также используются для противодействия скачкам и скачкам входного напряжения; Вы можете узнать больше о различных типах схем переходных фильтров здесь.

Эта секция блока питания часто является первым признаком того, где были сокращены расходы, чтобы обеспечить соответствие модели определенному бюджету. У более дешевых будет меньше фильтрации, а у самых дешевых вообще не будет (а это не то, что вам нужно!).

Теперь, когда мы все расслабились и расслабились, давайте приступим к повседневной работе блока питания: изменению напряжения.

Спуск на электрическую авеню

Помните, что блоку питания необходимо изменить напряжение переменного тока, которое может составлять в среднем 120 вольт (технически это среднеквадратичное значение, равное 120 вольт, но это точно не сошло с языка) и взломать это до напряжений постоянного тока 12, 5, и 3,3 вольта.

Первое, что делается, — это преобразование переменного тока в постоянный, и в этом блоке питания используется компонент, называемый мостовым выпрямителем . На картинке ниже это плоский черный объект, приклеенный к куску металла (который действует как радиатор).

Опять же, это еще одна область, в которой производитель блоков питания может сократить расходы, поскольку более дешевые компоненты хуже справляются с преобразованием переменного тока в постоянный (например, выделяют больше тепла). Теперь, если входное напряжение достигает пика на уровне 170 вольт (что имеет место для сети 120 В), то мостовой выпрямитель будет выдавать 170 вольт постоянного тока.

Это передается на следующий этап блока питания, и в том, который мы рассматриваем, он называется активной коррекцией коэффициента мощности преобразователем (APFC).Эта схема регулирует ток в устройстве с учетом того, что он заполнен компонентами, которые накапливают и выделяют энергию сложным образом; это может привести к тому, что фактическая выходная мощность устройства будет меньше той, которую вы должны получить.

В других блоках питания используются пассивные преобразователи , которые, по сути, выполняют ту же работу. Они менее эффективны, но подходят для блоков с низким энергопотреблением — они также дешевле, поэтому вы можете догадаться, в каких блоках питания они есть, а в действительности их не должно быть!

APFC можно увидеть на изображении выше — эти большие цилиндры слева являются конденсаторами и хранят отрегулированный ток, прежде чем отправлять их на следующий этап в цепочке процессов блока питания.

Эта секция, спрятанная за APFC, называется схемой с широтно-импульсной модуляцией (сокращенно ШИМ). Его задача — принимать постоянное напряжение и использовать несколько полевых транзисторов для включения и выключения напряжения с очень высокой скоростью — по сути, он преобразует постоянное напряжение обратно в переменное. Это происходит потому, что часть блока питания, которая понижает сетевое напряжение до 12 вольт, является трансформатором . В этих устройствах используется электромагнитная индукция и набор из двух катушек провода (одна имеет больше витков в катушке, чем другая) для понижения на напряжения; однако трансформаторы работают только с переменным напряжением.

Частота переменного напряжения (скорость, с которой оно изменяется, измеряется в герцах, Гц) значительно влияет на эффективность трансформатора — чем выше, тем лучше — вот почему питание от сети 50/60 Гц заменяется на тот, который меняется примерно на 50/60 тысяч Гц. Чем эффективнее трансформатор, тем он может быть меньше. Это сверхбыстрое переключение постоянного напряжения является источником названия для этого типа устройств: импульсный источник питания (SMPS).

На рисунке ниже вы можете увидеть 3 трансформатора — самый большой генерирует только выходное напряжение 12 В; в других блоках питания большой трансформатор может обеспечивать все напряжения. Следующий, более крупный, создает один выход 5 В, о котором мы поговорим немного позже, а самый маленький действует как изолятор для схемы ШИМ, предохраняя его от повреждений, а также не позволяя создавать помехи другим напряжениям. в БП.

Различные блоки питания будут иметь разные способы создания необходимых напряжений, изоляции цепи ШИМ и т. Д.Все будет зависеть от бюджетных ограничений и от того, сколько мощности должно предложить устройство. Однако всем им нужно будет снять выходной сигнал с трансформатора и снова включить его в постоянный ток.

На изображении ниже большой кусок металла — это радиатор для мостовых выпрямителей, выполняющих это преобразование. Мы также можем видеть в этом конкретном блоке питания, печатная плата в середине изображения соответствует кластеру из модулей регулирования напряжения (VRM), которые создают выходы 5 и 3,3 вольт.

На данном этапе стоит поговорить о чем-то под названием Ripple .

В идеальном мире с идеальными блоками питания переменное напряжение переменного тока преобразуется в постоянное, никогда не колеблющееся напряжение постоянного тока. На самом деле, это не на 100% точно, и напряжения постоянного тока действительно немного различаются.

Этот вариант называется пульсацией напряжения , и для блока питания вы хотите, чтобы оно было как можно меньшим. Cooler Master не указывает размер пульсаций напряжения в спецификациях для этой модели блока питания, поэтому мы обратились к подробному обзору, чтобы найти их.Один из таких анализов был проведен JonnyGuru.com, и они обнаружили, что линия +12 В в их тестах имела пик напряжения пульсаций на уровне 0,042 вольт (42 милливольта).

На изображении ниже показано, как это соотносится с тем, что требуется. Красная линия — это заданная постоянная +12 В постоянного тока, переменная синяя линия — это то, что мы на самом деле получаем (хотя сама пульсация не постоянна).

Качество конденсаторов, используемых в блоке питания, играет важную роль. Чем меньше и дешевле, тем больше будет пульсация, чего мы не хотим.Если он слишком большой, тогда сложная электронная схема в остальной части компьютера может работать нестабильно. К счастью, в нашем примере 40 с лишним милливольт — это нормально: неплохо, но неплохо.

Независимо от того, что используется для создания выходных напряжений и обеспечения их формы постоянного тока, необходимо еще несколько элементов схемы, прежде чем мы начнем размахивать кабелями. Все это связано с управлением выходами блока питания, гарантируя, что, если высокий спрос на мощность имеет место на одном конкретном напряжении, то другие не будут преуменьшены в процессе.

Чип, который вы видите здесь, называется супервизором и контролирует выходы, проверяя, не выдают ли они слишком много или слишком мало напряжения и тока. Однако это не очень сложно, поскольку все, что он делает, отключает блок питания, если возникает какая-либо из этих проблем.

В более дорогих блоках питания используются цифровые сигнальные процессоры (DSP) для отслеживания того, что происходит, и они также могут регулировать напряжения, если это необходимо, а также отправлять сведения о состоянии блока питания на компьютер, используя его.Не слишком полезно для обычного пользователя ПК, но для компьютеров, используемых в качестве серверов, вычислительных машин и т. Д., Это часто желательная функция.

Детские розетки

Все блоки питания идут с длинными пучками проводов, выходящими из их спины. Количество комплектов и то, как они подключаются к основному блоку, будут различаться в широком спектре доступных моделей, но все они будут обеспечивать некоторые стандартные подключения.

Поскольку напряжение является мерой разницы , для данного выхода должно быть два провода: один для указанного напряжения (например,г. положительный 12 В, или +12 В для краткости) и эталонный провод, по которому измеряется разница. Этот провод известен как заземление , или , общая линия , и они образуют петлю: от блока питания к устройству, нуждающемуся в питании, а затем обратно к блоку.

Поток тока проходит по этим проводам контура, но поскольку в некоторых контурах будет протекать только небольшое количество тока, несколько проводов заземления могут использоваться разными контурами.

Первый из них — обязательный 24-контактный ATX12V версии 2.4 подключения — он предлагает несколько проводов для разных напряжений, а также несколько конкретных.

Важным является провод + 5V standby — пока блок питания включен и подключен, этот провод всегда под напряжением. Это потому, что компьютер на самом деле не выключается, когда вы приказываете операционной системе выключиться. Материнская плата потребляет энергию, необходимую для работы в режиме ожидания.

Также будет еще один 8-контактный разъем для материнской платы, который обеспечивает два набора проводов +12 В и заземления, и большинство блоков питания также будут иметь как минимум один 6- или 8-контактный разъем питания PCI Express.

Видеокарты

могут потреблять максимум 75 Вт от слота PCI Express материнской платы, поэтому этот разъем обеспечивает дополнительную мощность для сегодняшних чудовищных графических процессоров.

Этот конкретный блок питания фактически имеет два разъема питания PCI Express, подключенных к одним и тем же проводам, по соображениям стоимости, поэтому, если у вас есть действительно мощная видеокарта в компьютере, было бы лучше использовать отдельный пучок проводов.

Разница между 6- и 8-контактным разъемом PCI Express заключается в дополнительных двух проводах заземления.Это позволяет более высокому уровню тока течь по проводам +12 В, помогая питать более голодные графические процессоры.

За последние несколько лет мы стали свидетелями увеличения числа блоков питания, которые гордо носят в своем описании ярлык «модульный». Все это означает, что некоторые разъемы питания подключены к другому разъему, который вставляется непосредственно в блок питания. Таким образом, вместо того, чтобы забивать внутреннюю часть корпуса компьютера массой кабелей и разъемов, вы можете удалить то, что не нужно для экономии места.

В этой модели Cooler Master, как и во многих других, используется довольно простая система подключения модульных кабелей.

Каждый разъем обеспечивает по одному проводу + 12В, + 5В и + 3,3В, а также два провода заземления, и в зависимости от того, к какому устройству будет подключен кабель, разъем на другом конце кабеля будет либо используйте ту же схему подключения или что-нибудь попроще.

Разъем Serial ATA (SATA), указанный выше, используется для подачи питания на жесткие диски, твердотельные накопители и периферийные устройства, такие как записывающие устройства DVD.

Эта знакомая форма получила название разъема питания AMP MATE-N-LOK 1-480424-0. Что ж, большинство людей называют его разъемом Molex , но на самом деле это название компании, которая его разработала. Он обеспечивает один + 12В, один + 5В и два провода заземления.

Кабельная разводка выходного источника питания блока питания — еще одна область, где можно сэкономить или уложить более высокий бюджет, чтобы улучшить внешний вид или гибкость проводов. Толщина (или калибра ) металлической проволоки, используемой в кабелях, также играет роль, поскольку более толстые провода имеют меньшее электрическое сопротивление, чем более тонкие, что приводит к меньшему тепловыделению при протекании через них тока.

(Что-то внутри) Такой сильный

В начале этой статьи мы сказали, что большинство блоков питания названы в честь максимальной мощности, которую они могут предложить. На простейшем уровне электрическая мощность — это просто напряжение, умноженное на ток (например, 12 вольт x 20 ампер = 240 ватт), и хотя такое утверждение заставит многих инженеров попытаться исправить это замечание, оно работает достаточно хорошо для наших целей.

Как и большинство фирменных или универсальных моделей, наш блок питания снабжен этикеткой, на которой представлены различные фрагменты информации о том, сколько мощности может обеспечить каждая линия напряжения.

Здесь мы видим, что общая мощность, доступная по всем линиям +12 В, вместе взятые, достигает пика в 624 Вт; Добавьте все остальные, указанные на этикетке, и мы получим в сумме 760 Вт, и что же тогда? Что ж, дело в том, что нормальные линии + 5V и + 3.3V создаются с использованием VRM на выходе + 12V блока питания.

И, конечно же, все выходные напряжения поступают из одного источника: сетевой розетки. Таким образом, мощность 650 Вт — это максимум, который блок питания может обеспечить в сумме по всем линиям. Так что, если вы использовали 600 Вт на выходе +12 В, на все остальное у вас останется только 50 Вт. К счастью, большая часть оборудования внутри современного ПК в любом случае потребляет большую часть своего питания от линий 12 В, поэтому это редко является проблемой, если вы выбрали правильную модель блока питания для своих нужд.

Рядом со спецификациями питания есть этикетка с надписью « 80 Plus Bronze. ». Это рейтинг эффективности, который используется в отрасли на добровольной основе (т. Е. Существуют законодательные требования к производителям блоков питания по соблюдению системы рейтингов).Эффективность также зависит от того, какой размер нагрузки пытается обслуживать блок питания (т. Е. Сколько тока потребляется по различным линиям).

Если мы возьмем наш Cooler Master, работающий так, что он обеспечивает мощность 325 Вт (50% от его максимальной мощности), то мы можем ожидать, что он будет иметь КПД от 80 до 85%, в зависимости от напряжения питания.

Это приведет к тому, что устройство потребляет от 382 до 406 Вт из стенной розетки. Более высокий рейтинг 80 PLUS не означает, что блок питания дает вам больше энергии, он просто меньше расходует впустую на всех этапах фильтрации, выпрямления, переключения и преобразования.

Также обратите внимание, что пиковая эффективность находится где-то между 50 и 100% нагрузкой; некоторые производители предоставляют диаграммы, показывающие, как можно ожидать, что устройство будет работать при различных нагрузках и напряжениях питания.

Диаграмма эффективности Cooler Master для их блока питания V1300 Platinum

Иногда стоит обращать внимание на эту информацию, особенно если вы захотели выложить пачку баксов на БП мощностью 1000 Вт. Если ваш компьютер будет использовать мощность, близкую к этому уровню, то его эффективность будет немного ниже.

Вы можете увидеть некоторые блоки питания, утверждающие, что они однорельсовые или многорельсовые (или предлагают переключатель для переключения между ними). Термин «шина» — это просто другое слово для обозначения определенного напряжения, которое генерирует силовой агрегат. В нашем примере Cooler Master есть одна шина 12 В и все различные разъемы питания, которые обеспечивают отвод тока +12 В от этой шины, если они используются. Многорельсовый блок питания будет иметь две или более систем, обеспечивающих 12 вольт, однако есть большая разница в том, как это реализовано.

Блоки питания

для приложений центра обработки данных или вычислительных серверов будут иметь несколько направляющих для обеспечения отказоустойчивости, поэтому отказ одного из них не повлияет на другие.Настольный компьютер с многорельсовым блоком питания может иметь такую ​​настройку, но они, скорее всего, просто возьмут основной выход 12 В и разделят его на два или три. Например, наш пример обеспечивает до 52 ампер тока на линии +12 В, что соответствует 624 ваттам электроэнергии. Дешевая многорельсовая версия того же устройства может иметь две линии +12 В, указанные в спецификации, но каждая из них будет обеспечивать ток только 26 ампер (или 312 Вт).

Хорошо спроектированный блок питания для настольного компьютера с использованием качественных компонентов не требует многорельсовой системы +12 В, так что не беспокойтесь об этом!

Деньги даром?

Блоки питания

бывают разных ценников.Быстрый просмотр списков на Amazon для того же формата размера дает их всего от 15 долларов за стандартный блок мощностью 400 Вт и вплоть до 180-240 долларов за полностью модульную атомную электростанцию ​​мощностью 1000 Вт от EVGA или Seasonic. . Что вы получаете за свои деньги? Какие вещи стоят больше 200 долларов?

Способность обеспечивать большую мощность очевидна, но как эта мощность передается. Ультра дешевая модель допускает ток до 25 А по линиям +12 В, тогда как сократитель кошельков обеспечивает более чем в 3 раза больше — 83 А.Сегодняшние процессоры и видеокарты используют линии +12 В почти для всех своих требований к питанию, но, конечно же, 25 А достаточно?

Учитывая, что теперь вы можете купить «настольный» процессор с 32 ядрами и соединить его с такой же титанической видеокартой, оба с аппетитом на 300 Вт при полной нагрузке, дешевый блок питания совершенно не будет соответствовать спросу; с другой стороны, самый дорогой из них будет иметь достаточно места, чтобы справиться с этим. А поскольку совокупная цена такого процессора и графического процессора может легко превысить 3500 долларов или больше, возможно, выделение нескольких дополнительных сотен не станет большим шоком для некоторых клиентов.

Но на самом деле вы платите за качество компонентов, используемых внутри блока питания. Вернитесь к началу этой статьи и посмотрите на внутренности блока Cooler Master, который мы разбирали. Здесь нет большого количества деталей, и, поскольку практически каждый бит имеет решающее значение для работы устройства, нетрудно понять, почему дополнительные расходы не всегда являются деньгами напрасно.

И на этом мы завершаем рассмотрение блока питания (и оставляем след битов по всему полу).Это увлекательная часть набора, и уровень инженерии, связанный с проектированием и производством хорошего, на удивление сложен. Если у вас есть какие-либо вопросы о блоках питания или о блоке питания, который в настоящее время находится в вашем компьютере и спокойно выполняет свою работу, как обычно, задайте их нам в разделе комментариев ниже.

Обновлено: 04.01.2022 — 18:31

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *