Зарядное устройство на основе DC-DС преобразователя или почти лабораторный блок питания
Здравствуйте, уважаемые читатели. Сегодня хочу рассказать как я делал себе универсальное зарядное устройство (можно использовать как лабораторный блок питания) на основе народного DC-DС преобразователя.Предыстория
В хозяйстве нужен был небольшой блок для питания разных самоделок, а также универсальное зарядное устройство. Начитавшись, насмотревшись разных обзоров в сети решил сам собрать данный приборчик.Корпус и комплектуха
Задача номер один в каком корпусе собирать устройство, хотелось компактно и симпатично. На барахолке нашел старенький медиаплеер Egreat R2A, его корпус как раз подойдет, тем более на боковой грани корпуса есть вентилятор, который пригодится для охлаждения внутренностей.Платки, потенциометры, вольт-амперметр, клеммы и другое
Обзор этого блока питания от kirich, ссылка
Регулировать напряжение и ток будет понижающий DC-DC преобразователь XL4016, покупался тут
Обзор этого преобразователя от kirich, ссылка
Показывающим прибором будет цифровой вольт-амперметр, покупался тут
Диапазон измерений — 0-30В, 0-10A
Многооборотные резисторы для точной регулировки, покупались тут
Маломощный понижающий DC-DС преобразователь, покупался тут. Будет использоваться для питания вентилятора.
Клеммы для подключения, покупались тут
Ну и разъем питания, выключатель и держатель предохранителя, все нашлось в закромах
Блок питания выдает 24В на два преобразователя. Больший преобразователь XL4016, на нем двумя резисторами регулируются напряжение и ток на выходе. Второй маленький преобразователь на LM2596, питает напряжением 5В вентилятор для охлаждения устройства. Текущее напряжение и ток на выходе показывает цифровой вольт-амперметр.
Сборка
Конструкция выбранного корпуса такая, что верхняя его часть с передней панелью и боковыми стенками составляет единое целое. Для того чтобы открыть корпус нужно её полностью снять. Поэтому что бы не делать мешанину из проводов, потенциометры и вольт-амперметр будут установлены внутри, ну а клеммы уже на самой передней панели.В корпусе, по размерам передней панели, сделал место для её установки
Потенциометры и вольт-амперметр (предварительно вынял его из корпуса) установил на пластиковый уголок
По размерам родной платы медиаплеера сделал пластину, на которой будут установлены все компоненты будущего устройства. На ней закрепил пластиковые стойки.
Родная плата
В медиаплеере стояла такая платаНа заднюю часть установил разъем для питающего провода, предохранитель и выключатель питания
Собрал всё вместе
Провода для вывода на клеммы
Подстроечные резисторы на преобразователе выпаял, вывел проводами на многооборотные резисторы
Ещё фото внутренностей
Как я уже упоминал в корпусе есть такой вентилятор
Рассчитан он на напряжение питания 12В, понизив питание до 5В добился полностью бесшумной работы. Вентилятор установлен на боковой стенке корпуса
С противоположной стороны в днище корпуса есть отверстия, получается воздушный поток проходит через весь корпус, охлаждает внутренние компоненты и выбрасывается наружу. При длительном тестировании 14В 5А, больше всего грелся блок питания, около 60 градусов.
В закромах нашлись ручки от какой-то советской техники, немного их обточил на токарном станке и покрасил в черный
Готовое устройство в сборе
Вот такой получился DIY проект. Всем спасибо за внимание!
По традиции — киска
Еще не полиняла после зимыmysku.ru
:2000 ( ), 2009 . . , 2014 1
: 85,68 . : 197,59 . 10-02-016-06 , . , — DefSmeta , . |
generator.uef.ru
Простенький регулируемый DC-DC преобразователь, или лабораторный блок питания своими руками V2.
Наверное многие помнят мою эпопею с самодельным лабораторным блоком питания.Но меня неоднократно спрашивали что нибудь похожее, только попроще и подешевле.
В этом обзоре я решил показать альтернативный вариант простого регулируемого блока питания.
Заходите, надеюсь, что будет интересно.
Я долго откладывал этот обзор, то времени не было, что настроения, но вот дошли у меня руки и до него.
Данный блок питания имеет несколько другие характеристики чем предыдущий.
Основой блока питания будет плата DC-DC понижающего преобразователя с цифровым управлением.
Но всему свое время, а сейчас собственно немного стандартных фотографий.
Пришла платка в небольшой коробочке, ненамного больше пачки сигарет.
Внутри, в двух пакетиках (пупырчатом и антистатическом) была собственно героиня данного обзора, плата преобразователя.
Плата имеет довольно простую конструкцию, силовая часть и небольшая плата с процессором (данная плата похожа на плату из другого, менее мощного преобразователя), кнопками управления и индикатором.
Характеристики данной платы
Входное напряжение — 6-32 Вольта
Выходное напряжение — 0-30 Вольт
Выходной ток — 0-8 Ампер
Минимальная дискретность установки\отображения напряжения — 0.01 Вольта
Минимальная дискретность установки\отображения тока — 0.001 Ампера
Так же данная плата умеет измерять емкость, которая отдана в нагрузку и мощность.
Частота преобразования, указанная в инструкции — 150КГц, по даташиту контроллера — 300КГц, измеренная — около 270КГц, что заметно ближе к параметру указанному в даташите.
На основной плате размещены силовые элементы, ШИМ контроллер, силовой диод и дроссель, конденсаторы фильтра (470мкФ х 50 Вольт), ШИМ контроллер питания логики и операционных усилителей, операционные усилители, токовый шунт, а так же входные и выходные клеммники.
Сзади ничего практически и нет, только несколько силовых дорожек.
На дополнительной плате установлен процессор, микросхемы логики, стабилизатор 3.3 Вольта для питания платы, индикатор и кнопки управления.
Процессор — 8s003f3p6
Логика — 2 штуки 74hc595d
Стабилизатор питания — 1117-3.3
На силовой плате установлены операционные усилители mcp6002i 2 штуки (такие же операционники стоит и в ZXY60xx)
ШИМ контроллер питания самой платы xl1509 adj
В качестве силового ШИМ контроллера выступает микросхема xl4012e1. По даташиту это 12 Ампер ШИМ контроллер, так что здесь он работает не в полную силу, что не может не радовать. Однако стоит учесть, что входное напряжение лучше не превышать, это так же может быть опасно.
В описании на плату указано максимальное входное напряжение 32 Вольта, предельное для контроллера — 35 Вольт.
В более мощных преобразователях применяют слаботочный контроллер, управляющий мощным полевым транзистором, здесь все это делает один мощный ШИМ контроллер.
Приношу извинения за фотографии, никак не получалось добиться хорошего качества.
Силовая диодная сборка mbr1060
При осмотре платы увидел восстановленную дорожку, не думаю, что это страшно.
Но говорит о том, что изготовитель как минимум включает платы для проверки.
При первом включении плата отображает установленное по умолчанию напряжение 5 Вольт.
А так же ток, 1 Ампер. Эти установки можно изменять.
Для этого в этом режиме надо выставить необходимый ток, нажать SET, на индикаторе отобразятся четыре прочерка, потом повторить операцию для напряжения.
после включения плата будет запускаться с этими установками.
Так же можно настроить автоматическое включение выхода и автоматический попеременный режим отображения тока\напряжения.
Выходное напряжение устанавливается довольно точно…
С током картина несколько хуже, но не думаю, что это так критично.
При повышении напряжения погрешность растет.
А вот точность установки тока практически неизменна.
В качестве проверки подключил автомобильную лампу, выставил 13.5 Вольт
В описании платы сказано, что при токе нагрузки до 6 Ампер достаточно естественного охлаждения, при токах более 6 Ампер уже необходимо применять активное охлаждение.
Я проверил нагрев при токе 6 Ампер и напряжении на нагрузке около 12 Вольт.
После 20 минутного прогрева температуры были такие — ШИМ контроллер — 82 градуса.
Выходная диодная сборка — 72 градуса
Силовой дроссель — 60 градусов.
В принципе, вполне верится в 6 Ампер с пассивным охлаждением, но плата тестировалась на столе, при установке в корпусе лучше применять либо активное охлаждение, либо ограничивать ток хотя бы на уровне 5 Ампер.
Плавно мы перешли к практической части обзора 🙂
Собственно применение данной платы
На базе этой платы я решил сделать небольшой вспомогательный блок питания, а так же была мысль использовать его как зарядное устройство. Более мощный лабораторный блок питания у меня обычно стоит на столе и довольно часто используется. А так как процесс зарядки может занимать длительное время, то и было решено изготовить еще один, но попроще.Сначала я откопал дома плату от одного из компьютерных блоков питания, она уже успела послужить донором, но чудом избежала полной распайки. Видно, что части компонентов уже нет.
Дальше берем в руки паяльник, выпаиваем все лишнее и впаиваем на место недостающее.
На фото выпаяна часть компонентов, после того как было сделано фото, я выпаял еще некоторые детали, но это были уже мелочи.
Описания переделки приводить не буду по двум причинам.
1. Описаний такой переделки в интернете очень много.
2. Блоки питания хоть и собраны в основном на похожей элементной базе, но могут иметь отличия, потому лучше разбираться с каждым в отдельности.
А еще лучше просто купить БП на 24 или лучше 27 Вольт, соответствующей мощности и не заморачиваться с переделками. 🙂
После выпаивания ненужных компонентов я взял в руки маникюрные ножницы и отрезал кусок платы, предварительно очертив кусок, где нет используемых дорожек.
Так же пришлось сходить на радиорынок и купить то, чего у меня дома не было.
В общем блок питания я переделал. Переделка заключалась в удалении элементов, которые отвечают за работу узлов выдающих сигналы Power good, выпрямителей и фильтров 12, 5 и 3.3 Вольта, ну и тому подобных.
Трансформатор перематывать было лень, потому к выходной диодной сборке добавились еще две, образуя диодный мост. Я добавил две сборки потому, что сборки с общим анодом у меня в наличии нет, и каждая сборка работает как просто одиночный диод.
Настроил 27.5 Вольт на выходе, больше мне не надо было, да и БП и плата будут работать в безопасном режиме.
Первая проверка после переделки.
Так выглядит плата после всех моих манипуляций.
Из своих домашних запасов выбрал подходящий корпус для будущего блока питания.
Примерил всю начинку внутри, собственно теперь стало понятно, зачем я делал вырез в печатной плате блока питания. 🙂
Дальше пошел процесс установки всего этого в корпус.
Прикинул как лучше и удобнее будет разместить элементы управления и индикации на передней панели и вырезал отверстия под светофильтр и кнопку.
После этого немного обработал грани небольшим канцелярским ножом.
Примерил как это будет выглядеть, под клеммники пришлось сделать отверстия немного овальными, так как на клеммниках есть выступы, защищающие от прокручивания.
Начинает что-то вырисовываться.
Разметил и просверлил отверстия под кнопки, светодиоды, установил плату управления.
Спереди вроде красиво даже вышло 🙂
А вот сзади лучше не смотреть. Прошу не пугаться.
Кнопки на плате преобразователя установлены слишком близко друг к другу, потому вырезал небольшой кусочек текстолита, прорезал ножовкой медь, просверлил отверстия под кнопки.
После всех манипуляций приклеил все термоклеем.
Так же пришлось вынести светодиоды за пределы светофильтра и немного изменить их расположение. Я сделал так же, как сделано у меня на основном блоке, что бы не путаться.
Вот и все собрано в кучку.
Сейчас, набирая текст, думаю, как то все быстро получается.
Когда паял, сверлил, пилил, мне так не казалось.
В процессе я допустил ошибку, ниже в комментариях подсказали. Между диодным мостом и конденсатором фильтра должен быть дроссель, это важная часть БП. Дроссель можно использовать от старого БП, тот, который большой с кучей обмоток. Я смотал все обмотки кроме 12 Вольт.
Сзади установлен разъем питания и вентилятор. На всякий случай я закрыл вентилятор решеткой. Вентилятор размером 50х15мм, довольно мощный, но очень шумный, надо будет допилить к нему термоконтроль, пока он запитан постоянно от КРЕН8В (15 Вольт, боялся, что будет мало).
Осталось свинтить корпус и можно сказать, что все готово. В комплекте к корпусу даже были ножки и шурупы (это через лет 7 и переезд с одной квартиры на другую).
Первое включение в уже полностью собранном состоянии, оно работает :))).
Ну и небольшая проверка, напряжение 12 Вольт
Ток более 7 Ампер.
Остались косметические мелочи.
Сделать регулировку оборотов вентилятор в зависимости от температуры.
Оформить переднюю панель, а то хоть все и интуитивно понятно, но создает ощущение незавершенности.
Описания на используемые компоненты, а так же инструкцию, я выложил в виде архива.
В инструкции, найденной мною в интернете, описан вход в сервисный режим, где можно изменить некоторые параметры. Для входа в сервисный режим надо подать питания при нажатой кнопке ОК, на экране будут последовательно переключаться цифры 0-2, что бы переключить настройку, надо отпустить кнопку во время отображения соответствующей цифры.
0 — Включение автоматической подачи напряжения на выход при подаче питания на плату.
1 — Включение расширенного режима, отображающего не только ток и напряжение, а и емкость, отданную в нагрузку и выходную мощность.
2 — Автоматический перебор отображения измерений на экране или ручной.
Так же в инструкции есть и пример запоминания настроек, так как у платы можно настроить лимит по установке тока и напряжения и есть память установок, но в эти дебри я уже не лез.
Так же я не трогал контактны для разъема UART, находящиеся на плате, так как даже если там что-то и есть, то программы для этой платы я все равно не нашел.
Резюме.
Плюсы.
1. Довольно богатые возможности — установка и измерение тока и напряжения, измерение емкости и мощности, а так же наличие режима автоматической подачи напряжения на выход.
2. Диапазон выходного напряжения и тока вполне достаточен для большинства любительских применений.
3. Качество изготовления не то что бы хорошее, но без явных огрехов.
4. Компоненты установлены с запасом, ШИМ на 12 Ампер при 8 заявленных, конденсаторы на 50 Вольт по входу и выходу, при заявленных 32 Вольта.
Минусы
1. Очень неудобно сделан экран, он может отображать только 1 параметр, например —
0.000 — Ток
00.00 — Напряжение
Р00.0 — Мощность
С00.0 — Емкость.
В случае последних двух параметров точка плавающая.
2. Исходя из первого пункта, довольно неудобное управление, валкодер бы очень не помешал.
Мое мнение.
Вполне достойная плата для построения простенького регулируемого блока питания, но блок питания лучше и проще использовать какой нибудь готовый.
Данная плата, для тестирования и обзора, была мне бесплатно предоставлена магазином gearbest.
Это мой пятидесятый обзор, почти юбилейный (когда только столько набралось), надеюсь, что он будет полезен и интересен, пишите в комментариях свои вопросы, попробую ответить.
Купон на скидку
По моей просьбе магазин предоставил купон на скидку, с ним цена на плату будет 20.93, купон — B3008DH
Разница конечно маленькая, но хоть что-то.
Вместо котика
Я давно не выкладывал разные интересные рекламы.Это не реклама инструмента, но она мне просто нравится и даже немного подходит под тему обзора.
mysku.ru
Автомобильные преобразователи напряжения (инверторы) 220В.
△
▽
Автомобильные преобразователи напряжения (инверторы) 220В.
В наше время в салоне автомобиля человек зачастую проводит времени больше, чем в собственной квартире. Но даже в современном автомобиле, приспособленном для длительных поездок, бывает некомфортно путешествовать хотя бы вследствие отсутствия элементарных бытовых приборов. Их невозможно взять с собой в дорогу из-за того, что нет привычной нам домашней электросети 220В. Правда часть устройств, все же имеет возможность питания или подзарядки своей аккумуляторной батареи от автомобильного прикуривателя. Однако далеко не все устройства могут питаться непосредственно от автомобильной низковольтной сети. А если Вы захотите взять с собой в дорогу телевизор, ноутбук, электробритву, обычный домашний компьютер, дрель, другую бытовую технику? Большая часть всех этих устройств работает от сети переменного тока с напряжением 220В, а автомобильный аккумулятор в состоянии предоставить только постоянный, низкого напряжения 12-(24)В. Все эти проблемы достаточно легко можно устранить при помощи такого специального оборудования, как преобразователь напряжения (инвертор) для авто.
Преобразователь напряжения или инвертор – это устройство, предназначенное для преобразования входного постоянного напряжения (DC) 12(24)В в переменное напряжение (AC) 220В с частотой 50 Герц на выходе. То есть автомобильный инвертор вырабатывает переменный ток, благодаря чему к нему можно подключать самые разнообразные электроприборы работающие от бытовой сети переменного тока.Все инверторы по типу выходного напряжения можно разделить на две группы:
1.Преобразователи с «чистым» синусом. Имеют на выходе переменное гармоническое напряжение амплитудой 310В, среднеквадратичным (действующим) значением 220В и частотой 50Гц.
Однако эти преобразователи, обладая максимально качественным выходным напряжением, не лишены недостатков. Они наиболее дороги, имеют большие габариты и массу, меньший КПД. При этом синусоида принципиально важна лишь для некоторых лабораторных, телекоммуникационных, измерительных приборов, медицинской аппаратуры, для профессиональной аудиоаппаратуры (HI-END, HI-FI) и т.п.
2. Преобразователи с выходным напряжением упрощённого вида, заменяющего синусоиду (модифицированный синус). Имеют на выходе переменное прямоугольное напряжение амплитудой 310В, среднеквадратичным (действующим) значением 220В и частотой 50Гц. Хотя в некоторых, особенно в дешевых преобразователях, выходное напряжение может сильно отличаться от эквивалентного синусу.
Подавляющее большинство приборов предназначенных для работы от сети 220В 50Гц. допускает использование переменного напряжения упрощённой формы сигнала без каких-либо последствий. Для приборов же имеющих в своем составе импульсные блоки питания (современные телевизоры, компьютеры, зарядные устройства и т.д.) такое напряжение является предпочтительным.
Основная задача при выборе автомобильного инвертора — это подбор устройства необходимой мощности. Ведь если купить инвертор с мощностью равной или ниже мощности того устройства, которое Вы планируете питать, то его мощности может не хватить. Главное правило при выборе инвертора — всегда нужно приобретать автомобильный инвертор с мощностью, превышающей мощность того устройства, которое Вы собираетесь питать.
В настоящее время выпускаются автомобильные инверторы различной мощности — от 50 Вт и выше.
Маломощные устройства (до 150-200 Вт) хороши тем, что отличаются невысокой стоимостью и легко подключаются через разъем прикуривателя. При этом необходимо помнить, что разъем прикуривателя защищен в автомобиле плавким предохранителем (как правило 15А) и подключение через него мощного преобразователя приведет к перегоранию этого предохранителя, а заменить его, в современных машинах, бывает ох как не просто. Не говоря уже о том, что сам разъем прикуривателя не предназначен для больших мощностей.Такие инверторы подойдут только для подключения небольших бытовых приборов.
С помощью же более мощных инверторов можно питать самые разнообразные устройства — от стационарного компьютера и электроинструмента, до холодильника и СВЧ-печи. При этом подключать такое устройство необходимо отдельными, мощными, проводами с обеспечением хорошего электрического контакта. Так как потребляемый при их работе ток будет составлять десятки ампер.
Если же Вы собираетесь подключать к инвертору разные устройства, то его нужно выбирать, исходя из технических характеристик самого мощного из них. Для справки можно привести мощность некоторых бытовых приборов и устройств:
Таблица потребляемой мощности некоторых электроприборов. | |
Электроприборы | Мощность |
Зарядные устройства |
|
Зарядное устройство фонаря | 8 Вт |
Зарядное устройство сотового телефона | 15 Вт |
Зарядное устройство видеокамеры | 25 Вт |
Электроинструменты |
|
Клеевой пистолет | 20 Вт |
Шуруповерт | 50-80 Вт |
Электролобзик | 150-200 Вт |
Электрорубанок | 200-300 Вт |
Электродрель | 300-500 Вт |
Электродрель с перфоратором | 600-1000 Вт |
Перфоратор | 300-600 Вт |
Шлифовальная машина | 300-600 Вт |
Полировочная машина | 300-600 Вт |
Болгарка | 600-1200 Вт |
Цепная электропила | 1200-2000 Вт |
Насосы/компрессоры |
|
Воздушный компрессор | 50-100 Вт |
Краскопульт | 500 Вт |
Мойка (Karher и т.д.) | 900 Вт |
Водяной насос | 200-300 Вт |
Электровентилятор | 30-100 Вт |
Бытовая техника |
|
Плеер (радиоприемник) | 10-20Вт |
Электробритва | 10 Вт |
Видеомагнитофон | 40 Вт |
CD-DVD Плеер | 60 Вт |
Цветной телевизор (экран 13дюймов) | 70 Вт |
Цветной телевизор (экран 27дюйма) | 150 Вт |
Видеодвойка (экран 20 дюймов) | 150Вт |
Портативный пылесос | 500 Вт |
Пылесос | 1000-2500 Вт |
Утюг | 400-2000 Вт |
СВЧ печь | 1000-2500 Вт |
Кухонный комбайн | 300-500 Вт |
Швейная машина | 100-200 Вт |
Стереоусилитель | 200Вт |
Оргтехника |
|
Струйный принтер | 50 Вт |
Ноутбук | 150 Вт |
Телефакс | 250 Вт |
Персональный компьютер | 400 Вт |
В том случае, если Вы собираетесь подключать к автомобильному инвертору сразу несколько устройств одновременно, следует сложить их мощность и, соответственно, выбрать модель инвертора, подходящей мощности. В любом случае помните, что подключаемые к инвертору мощности не должны превышать мощность самого инвертора
Не стоит чересчур гнаться за мощностью автомобильного инвертора, если Вы планируете подключать к нему только небольшие бытовые приборы. Ведь мощные инверторы не слишком удобны в работе. Более того, все преобразователи потребляют часть энергии для собственных нужд (КПД инвертора, как правило не более 80%) и просто подключив 2х киловатный преобразователь (без нагрузки) вы будете «отдавать» на его нужды (холостой ход) около 40Вт (3А).
Еще одно необходимое требование которое нужно учитывать: суммарная потребляемая мощность (потребляемый ток) электроприборов не должна быть ощутимо больше емкости батареи и тока генератора автомобиля. Пользуясь инвертором важно понимать, что автомобильный генератор и тем более аккумулятор не являются электростанцией и их возможности ограничены. В противном случае можно оказаться с разряженным аккумулятором и неработающим двигателем где-нибудь в лесу под елочкой. А слишком большой ток потребления может вывести батарею из строя (некоторые виды батарей могут даже взорваться).
Учтите также, что время автономной работы от аккумулятора, при подключении потребителей большей мощности, уменьшается неравномерно. Такова особенность аккумуляторов – при больших нагрузках время работы будет ощутимо меньше расчетного.
Мощность преобразователя и рекомендуемые емкости АКБ
Мощность преобразователя кВт | 0,3 | 0,5 | 1 | 1,5 | 2 | 2,5 | 3 |
Типовая максимальная мощность преобразователя (кратковременная допустимая нагрузка) кВт | 0,4-0,6 | 0,7-1 | 1,5-2 | 2-3 | 3-4 | 3,7-5 | 4-5 |
Минимальная емкость АКБ (А/ч): | 45 | 55 | 60 | 65 | 85 | 100 | 120 |
Ориентировочное время работы от аккумуляторов
АКБ/нагрузка | 100 Вт | 300 Вт | 500 Вт | 1 кВт | 2 кВ | 2.5 кВт |
190 А/ч | 22ч | 6ч | 4ч | 1,5ч | 0,5ч | 20м |
85 А/ч | 10ч | 3ч | 1,5ч | 0,5ч | 10м | 10м |
55 А/ч | 5ч | 1,5ч | 0,5ч | 10м | 2м | — |
При выборе инвертора с подходящей Вам мощностью нужно еще и учитывать специфику работы тех устройств, которые Вы собираетесь к нему подключать.
Условно все приборы можно разделить на 2 группы:
1я группа: Электроприборы, стартовая мощность которых не превосходит (или не сильно превосходит) номинальную. К ним относятся, потребляющие постоянную мощность телевизоры, компьютеры, энергосберегающие лампы, нагреватели, а так же инструмент с двигателями коллекторного типа (дрели, отрезные машинки, рубанки и т.д.), которые потребляют номинальную мощность только в момент прикладывания нагрузки и включении. Для приборов этой группы достаточно выбирать преобразователь напряжения с максимально допустимой мощностью немного превышающую номинальную мощность прибора.
2я группа: Электроприборы, при включении и в начале работы которых кратковременная мощность потребления (так называемая «пиковая стартовая нагрузка») в несколько раз (до десяти!) превышает номинальную мощность. К этой группе относятся, например лампы накаливания, холодильники, насосы, компрессоры. К тому же реальная мощность некоторых приборов, например, насосов на основе двигателей асинхронного типа и оборудования на их основе (кондиционеров, холодильников), примерно в 1,5 раза больше номинальной, это связано с тем, что обычно указывается мощность без учета потерь и косинуса фи (полезная мощность). Для приборов этой группы необходимо выбирать преобразователь напряжения с максимально допустимой мощностью значительно превышающую номинальную мощность прибора.
Основные режимы работы инвертора.
Режим длительной работы. При данном режиме показатели мощности инвертора соответствуют его номинальной мощности.
Режим перегрузки. В таком режиме большинство инверторов на непродолжительное время (до 30 сек.) в состоянии отдавать мощность в 1,5 – 2 раза больше номинальной.
Пусковой режим. В этом режиме инвертор способен отдавать еще большую моментальную мощность, правда, в течение очень краткого времени (несколько миллисекунд) для запуска электродвигателей и емкостных нагрузок.
Установка и подключение преобразователя.
Преобразователь напряжения необходимо устанавливать в сухом незагрязненном месте вдали от источников горячего воздуха и других тепловых излучений.
Нельзя располагать предметы на преобразователе или вблизи его вентиляционного отверстия.
При подключении преобразователя к бортовой сети автомобиля необходимо строго соблюдать полярность. Неправильное подключение, как минимум, приведет к выгоранию плавкого предохранителя на входе инвертора. К сожалению, более современными средствами (в силу больших протекающих токов потребления) защитить входные цепи не возможно. А как максимум, может привести к повреждению и выгоранию бортовой сети автомобиля.
Не подключать преобразователь напряжения, рассчитанный на выходное напряжение 12В, к электропроводке автомобиля (грузовика, лодки), имеющей напряжение 24В и наоборот.
Нельзя соединять (запараллеливать) выходы двух или более преобразователей напряжения.
Запрещается соединять выходную розетку преобразователя с промышленной сетью 220В переменного тока.
Перед подключением преобразователя к аккумулятору убедитесь, что все устройства выключены.
Чтобы предотвратить порчу автоинвертора, желательно во время запуска и глушения двигателя авто отключать автоинвертор от бортовой сети.
orionspb.ru
Марка, модель | Краткое описание | Цена, руб |
ВЭБР БПИ 50-12 | Блок питания сетевой (13,2 В; 3А-непрерывно; 5А-20 минут), импульсный | 2300.00 |
ВЭБР БПИ 70-12 | Блок питания сетевой (13,2 В; 3А-непрерывно; 5А-20 минут), трансформаторный | 1800.00 |
ВЭБР БПИ 100-12 | Блок питания сетевой (13,2 В; 6А-непрерывно; 8А-20 минут), импульсный | 3400.00 |
ВЭБР БПИ 150-12 | Блок питания сетевой (13,2 В; 10А-непрерывно; 12А-20 минут), импульсный | 5150.00 |
ВЭБР БПИ 200-12 | Блок питания сетевой (13,2 В; 12А-непрерывно; 16А-20 минут), импульсный | 6350.00 |
ВЭБР БПБ 60-12 | Блок беспереб. питания (13,2 В; 5А), встроен. гермет. необслужив. аккум. 7 Ач | 4500.00 |
ВЭБР БПБ 60-12Т | Блок беспереб. питания (13,8 В; 5А), трансформаторный, встроен. гермет. необслужив. акк. 7 Ач | 4500.00 |
СЭП 615-8 | Блок питания сетевой (8 В; 6А-непрерывно), импульсный | 1680.00 |
СЭП 615-12 | Блок питания сетевой (13,2 В; 3А-непрерывно; 5А-15 минут), импульсный, крепление к шасси | 1680.00 |
СЭП 625-12 | Блок питания сетевой (27,5 В; 4А-непрерывно; 5А-15 минут), импульсный, крепление к шасси | 1680.00 |
СЭП 615-24 | Блок питания сетевой (27,5 В; 2А-непрерывно; 2,5А-15 минут), импульсный | 1680.00 |
СЭП 625-24 | Блок питания сетевой (27.5 В; 2А-непрерывно; 2,5А-15 минут), импульсный, крепление к шасси | 2000.00 |
СЭП1215-12 | Блок питания сетевой (27В, 5А), настольный вариант | 2530.00 |
СЭП1215-24 | Блок питания сетевой (27В, 2/2,5А), настольный вариант | 2530.00 |
СЭП1225-24 | Блок питания сетевой (27В, 5А, крепление к шасси) | 2950.00 |
СЭП2400-12 | Блок питания сетевой (13.5В, 18А) | 3400.00 |
СЭП2400-24 | Блок питания сетевой (27В, 9А) | 3400.00 |
СЭП1900-12 | Блок питания сетевой (13.5В, 14А) | 2930.00 |
СЭП1900-24 | Блок питания сетевой (27В, 7А) | 2930.00 |
СЭППН 1510-24/12 | Преобразователь напряжения импульсный, 24/12 В; 14A — max | 1650.00 |
СЭППН 651-75/12 | Преобр. напряжения импульсный, 75/12 В; 5А для ж/д локомотивов Uвх 40-150 V | 2950.00 |
СЭППН3220-24/12 | Преобразователь напряжения импульсный, 24/12 В; 25А-max | 2580.00 |
БП ЛЕН | Блок питания (13,8 В; 3А), возможность подключения внеш. аккумулятора | 3540.00 |
БП МАЯК | Блок питания импульсный (13,8 В; 3А) ИП2.097.196 | 4130.00 |
Блоки питания фирмы VEGA | ||
Vega PSS-810 | Блок питания импульсный низкопрофильный, 220(110)В/13.8В, 8/10А. Защита: КЗ, перегрузка, превышение напряжения. | 2550.00 |
Vega PSS-815 | Блок питания импульсный низкопрофильный, 220(110)В/13.8В, 15/18А. Защита: КЗ, перегрузка, превышение напряжения. | 3300.00 |
Vega PSS-825 | Блок питания импульсный низкопрофильный, 220(110)В/13.8В, 22/27А. Защита: КЗ, перегрузка, превышение напряжения. | 3750.00 |
Vega PSS-825BB | Блок питания импульсный низкопрофильный, 220(110)В/13.8В, 22/27А. Автоматическое переключение на резервный акк, подзаряд акк. Защита: КЗ, перегрузка, превышение напряжения. | 4700.00 |
Vega PSS-825M | Блок питания импульсный низкопрофильный, 220(110)В/9-16В регулируемый, 22/27А. Измерители V/A. Защита: КЗ, перегрузка, превышение напряжения. | 4200.00 |
Vega PSS-3035 | Блок питания импульсный, 220(110)В/13.8В, 30/35А. Защита: КЗ, перегрузка, превышение напряжения. Измерители V/A | 4900.00 |
Vega PSS-3045 | Блок питания импульсный, 220(110)В/13.8В, 40/45А. Защита: КЗ, перегрузка, превышение напряжения. Измерители V/A | 6000.00 |
Vega PSS-6055 | Блок питания импульсный, 220(110)В/13.8В, 50/60А. Защита: КЗ, перегрузка, превышение напряжения. Измерители V/A | 9400.00 |
Vega PSS-6065 | Блок питания импульсный, 220(110)В/13.8В, 60/70А. Защита: КЗ, перегрузка, превышение напряжения. Измерители V/A | 10950.00 |
Преобразователи 24/12В Vega | ||
Vega PCS-510 | Преобразователь постоянного напряжения импульсный, 19-30В/13.8В, 8/10А. Защита: КЗ, перегрузки, превышения напряжения, кабели для подключения радиостанции | 1500.00 |
Vega PCS-515 | Преобразователь постоянного напряжения импульсный, 19-30В/13.8В, 12/15А. Защита: КЗ, перегрузки, превышения напряжения, кабели для подключения радиостанции | 1650.00 |
Vega PCS-620 | Преобразователь постоянного напряжения импульсный, 19-30В/13.8В, 17/20А. Защита: КЗ, перегрузки, превышения напряжения, кабели для подключения радиостанции | 2450.00 |
Vega PCS-630 | Преобразователь постоянного напряжения импульсный, 19-30В/13.8В, 25/30А. Защита: КЗ, перегрузки, превышения напряжения | 2830.00 |
Преобразователи 24/12В СЭП | ||
СЭП ПН1520-24\12 | Преобразователь постоянного напряжения, вход 27В, выход — 13.5В, 13А. Преобразователь напряжения для аппаратуры связи на автомобилях. | 920.00 |
СЭП ПН3220-24\12 | Преобразователь постоянного напряжения, вход 27В; выход — 13.5В, 25А. Защита от перенапряжения на входе и выходе, тепловая защита (после остывания работоспособность восстанавливается). Повышенная надежность. Увеличенный ресурс работы. | 2150.00 |
СЭП ПН651-75\12 | Преобразователь постоянного напряжения, вход 35-160В; выход — 13.8 В, 6А. Для аппаратуры связи на ЖЕЛЕЗНОЙ ДОРОГЕ. Полная гальваническая развязка. | 2540.00 |
СЭП ПН2000-75\12 | Преобразователь постоянного напряжения, вход 35-160В; выход — 13.8 В, 15А. Для аппаратуры связи на ЖЕЛЕЗНОЙ ДОРОГЕ. Полная гальваническая развязка. | 3670.00 |
www.data-radio.ru
Универсальный преобразователь напряжения или пару слов от том, что такое SEPIC
В сегодняшнем обзоре я хочу рассказать о довольно полезной вещи, универсальном преобразователе напряжения.Что это такое, как работает и что может, как всегда под катом.
Некоторое время назад, в одном из моих обзоров я уже упоминал о таком типе преобразователей, и даже собрал для примера один из них, сегодня пришла очередь обзора готового преобразователя такого типа.
Для начала буквально пара слов о том, что же это за преобразователь такой хитрый.
Обычно преобразователи бывают трех типов.
1. Повышающий
2. Понижающий
3. Инвертирующий
Но все они не могут выдавать напряжение выше/ниже чем напряжение источника.
Например понижающий из 10 никогда не сделает 12, а повышающий из 20 не сделает 5.
Но иногда бывают ситуации, когда входное напряжение в процессе работы может плавать как выше, так и ниже необходимого выходного.
Например надо 12 Вольт (к примеру питание жесткого диска или монитора), а питается это все от бортовой сети автомобиля, где может быть и 10 и 14.5.
Такую задачу чаще всего решают двумя способами.
1. Повышают до 15-20, а потом понижают до необходимого.
2. Ставят повышающе-понижающий преобразователь, он же Buck-Boost, он же SEPIC.
Первый тип уже обозревал коллега Ksiman.
Я же расскажу о втором.
Сначала немного общей информации.
Пришел преобразователь вместе с другим товаром и был упакован просто в пакетик с защелкой.
На сайте магазина заявлено
Входное напряжение — 4V-35V
Выходное напряжение — 1.23V-32V
Выходной ток — 3A максимум
Максимальная мощность — 25 Ватт
Размеры 50 x 25 x 12мм
Что означают данные характеристики.
Выходной ток не может быть более 3 Ампер при условии что выходная мощность не может быть более 25 Ватт.
Т.е. ограничивать надо то, во что раньше «упремся».
Можно получить на выходе 10 Вольт 2.5 Ампера (25 Ватт), или 5 Вольт 15 Ватт (3 Ампера).
На самом деле характеристики отличаются от заявленных, но об этом немного позже.
Выглядит платка вполне аккуратно, видно подстроечный резистор для регулировки выходного напряжения (ток не регулируется и не ограничивается).
Также на плате видно два дросселя, один из признаков SEPIC преобразователя, хотя и необязательный. иногда делают один дроссель с двумя обмотками, но он тоже на вид отличается.
Ну и печатная платка вид сверху 🙂
Снизу пусто. Видны межслойные переходы, позволяющие отводить тепло на нижнюю сторону платы, но как то расположены они нелогично, скорее всего они больше играют роль именно электрического соединения.
А жаль, можно было улучшить тепловой режим, но лучше так, чем никак.
Думаю что размеры платы проще понять по такому фото 🙂
Так, с внешним видом закончили, теперь попробуем разобраться подробнее, что же это такое.
Мне конечно очень хотелось бы расписать подробно что это и как оно работает. Но все дело в том, что описать совсем просто такой тип преобразователей тяжело, мало того, я даже когда подготавливал материалы к обзору, то натыкался на противоречивые описания.
Для начала блок схема собственно этого типа преобразователя. Стоит отметить, что существует два варианта топологии данного типа преобразователя, я приведу ту, к которой относится обозреваемая плата.
Дальше я попробую «дать слово» специалистам с большим опытом.
В процессе поисков я наткнулся на описание, которое на мой взгляд наиболее точное. Ссылка на оригинал статьи, а ниже я процитирую краткое описание принципа работы.
На схеме силовой ключ в состоянии — замкнут. Когда ключ замкнут, входная индуктивность заряжается от источника, а вторая индуктивность заряжается от конденсатора, выходной конденсатор в это время обеспечивает ток нагрузки.
В это время энергия в нагрузку не поступает, полярности токов в катушках и напряжений на конденсаторах обозначены на схеме. Тот факт, что обе индуктивности, L1 и L2, при замкнутом ключе отключены от нагрузки, усложняет регулировочные характеристики, как мы увидим далее.
После размыкания ключа схема приобретает несколько другой «вид».
Когда ключ разомкнут, первая индуктивность заряжает конденсатор С1, а также поддерживает ток в нагрузке, как показано на схеме. Вторая индуктивность в это время также подключена к нагрузке.
Если простыми словами, то схема работает за счет взаимной перекачки энергии между компонентами, позволяет как повышать напряжение, так и понижать его.
Для лучшего понимания я покажу где на плате все эти элементы.
Кстати, один из признаков SEPIC преобразователя — один ключевой элемент (не важно, транзистор или силовой ШИМ) и один диод.
Я начертил схему данной платы. номиналы пары компонентов могут немного отличаться от реальных, но в основном все соответствует.
Из минусов сразу отмечу то, что подстроечный резистор подключен к выходу, а не к общему проводу. Такое подключение крайне не рекомендуется, так как в случае пропадания контакта при регулировке на выход будет подано максимальное выходное напряжение.
Основой данной платы является небольшой ШИМ контроллер, который уже управляет мощным полевым транзистором и контролирует выходное напряжение.
В качестве ШИМ контроллера применен FP5139, ссылка на даташит.
Данный ШИМ контроллер работает на частоте 500КГц, что весьма неплохо. Диапазон входного напряжения 1.8-15 Вольт, что также приятно, особенно нижний порог в 1.8 Вольта. Думаю прикупить себе отдельно этих микрух.
Управляет контроллер полевым транзистором 088N04L, это 40 Вольт, 50 Ампер, 8.8мОм транзистор который может управляться сигналом логического уровня (обычно это 5 Вольт).
Также отличительным признаком SEPIC преобразователя является емкий керамический конденсатор.
Вообще, SEPIC отличается от других преобразователей тем, что содержит больше компонентов.
У классических повышающих, понижающих, инвертирующих преобразователей три основных элемента, но включенных в разной комбинации — дроссель, транзистор, диод.
Здесь к этой связке добавлен еще один дроссель и конденсатор.
Выходной диод на плате — SK86, весьма неплохой диод, заявлен максимальный ток до 8 Ампер.
Дальше я перешел к тестам.
Когда собрал такой «стенд», то мне даже жалко стало преобразователь.
Порвут ведь как Тузик грелку, подумал я, и как показала практика, не сильно был далек от истины.
Первое включение.
Сразу расскажу что вообще означает куча цифр на экранах.
Слева блок питания.
Верхний ряд — Выходное напряжение, выходной ток.
Нижний ряд — Выходная мощность, отданное количество мАч в нагрузку (но нам это неважно в данном случае)
Справа электронная нагрузка.
1. Установленный ток, Напряжение отключения (в данном случае неважно)
2. Измеренный ток нагрузки, измеренное входное напряжение (выходное напряжение преобразователя).
3. Принятая емкость (неважно в данном случае), мощность нагрузки (ток х напряжение).
4. Неважно.
Дальше я погонял преобразователь в разных режимах. Режимы выбирались отчасти спонтанно, параллельно измерял температуру основных компонентов и записывал в табличку.
Входное напряжение я не поднимал выше 14 Вольт, ниже расскажу почему так.
Судя по результатам измерений температуры я могу сказать, что плата не выдает заявленных характеристик.
Но небольшой нюанс. Не выдает она их из-за перегрева, мощности силовых элементов хватает чтобы выдавать их в течении короткого времени, но при длительном перегревается.
Можно конечно сделать радиатор, но охлаждать надо транзистор, два дросселя и диод, это сложно 🙁
Кроме того было замечено небольшое снижение выходного напряжения по мере прогрева преобразователя, обусловлено это часто тем, что применены не прецизионные резисторы и их сопротивление«плывет» от нагрева, но изменение не очень большое и им можно пренебречь.
Так как данный тип преобразователей отличается от других решения более высоким КПД, то я решил проверить и его.
В качестве демонстрации я сделал небольшой эксперимент. Для более наглядной демонстрации я выставлял такой режим работы, чтобы входная мощность была всегда равна 10 Ватт (ну или около того). в таком режиме выходная мощность будет равна КПД преобразователя.
На самом деле КПД будет выше, так как в таком варианте не учтены потери на проводах. Но так как они короткие, то врядли погрешность превысит пару процентов.
Еще несколько фото в разных режимах, повышение, понижение и с разным значением напряжений.
Кстати, по предыдущим фотографиям можно также посчитать КПД. Для этого надо измеренную мощность нагрузки (справа) разделить на измеренную мощность источника (слева).
Например на БП 15.45, на нагрузке 12.3. 12.3 / 15.45 = 0.796
Но уже даже так можно сказать, что КПД выше чем у комбинации повышающий + понижающий преобразователь.
Выше я писал что ограничил входное напряжение на уровне в 14 Вольт.
Сделано это было не просто так. Дело в том, что я сначала начал тестировать, а только потом перерисовал схему.
Изначально я думал что производитель просто сделал все по схеме из даташита и транзистор на плате для управления включением/выключением (кстати, преимущество SEPIC в том, что выход можно отключить, например step-up отключить нельзя) и входное напряжение не должно превышать 15 Вольт (из даташита на контроллер). Хотел еще ругаться что указали диапазон входного 35 Вольт.
Но начав разбираться со схемой я понял, что производитель поступил хитрее, он поставил на плате стабилизатор питания на примерно 9.5 В. Я допускаю что так сделано не на всех платах, будьте внимательны.
Сбил меня с толку именно регулирующий транзистор стабилизатора так как в схеме из даташита тоже есть транзистор.
Кстати, джампер на плате управляет включением/выключением преобразователя.
Разобравшись со схемой я решил продолжить тесты, но не успев даже начать я спалил плату.
Мощный транзистор ушел в КЗ, я даже не понял как это произошло.
Порывшись в загашниках нашел какую то материнскую плату, откуда выпаял полевой транзистор в таком же корпусе. Разница в том, что он только до 30 Вольт 🙁
Быстро перепаял, благо ничего больше из строя не вышло.
Кстати. Данный преобразователь в какой то степени является «безопасным», так как при выходе из строя силового транзистора он не подаст на выход полное напряжение питания как в случае с step-down.
Как еще один нюанс, данный тип преобразователей имеет выше пульсации на выходе (в сравнении с другими типами), но гораздо меньшие по входу, что дает преимущество при работе от аккумуляторов.
А вот дальше я захотел не только продолжить тесты, но и попробовать разобраться, почему вышел из строя транзистор.
В процессе тестов было замечено, что чем выше входное напряжение, тем ниже КПД.
Например при выходном 15 Вольт КПД составил для входного 20 Вольт 80%, а для 26 Вольт всего 62%.
Причем чем выше выходное, тем КПД еще меньше. При 20 Вольт выходного я легко получал входной ток более 2 Ампер и КПД ниже 40%.
После этого я вспомнил, что около транзистора была небольшая капелька припоя, которой до пробоя не было, а выходное напряжение после последнего эксперимента составляло 25 Вольт, а я и на входе накрутил почти 30, он даже пискнуть не успел.
Т.е. получается что транзистор буквально «спекся». Вызвано это скорее всего тем, что индуктивности начали входить в режим насыщения.
SEPIC конечно может работать в широком диапазоне напряжений, но оптимальный диапазон все таки привязан к примененным компонентам и нельзя охватить все.
Эксперименты показали, что чем ниже выходное напряжение, тем выше я могу поднять входное.
При 10 Вольт на выходе я легко накрутил 27 Вольт на входе, выше поднимать не стал так как максимальное напряжение транзистора всего 30.
Вообще это нормально и просто надо учитывать при использовании. Т.е. это скорее особенность чем неисправность.
Расписывать плюсы и минусы не буду, думаю все понятно просто из обзора, но немного сведу полученную информацию вместе.
1. Преобразователь работает и обеспечивает КПД выше чем у комбинации повышающий + понижающий преобразователь.
2. Характеристики платы завышены, но при желании можно получить и 3 Ампера, и 25 Ватт, все зависит от комбинации входного и выходного напряжения.
3. Компоненты применены очень неплохие. Но дроссели должны быть рассчитаны на больший ток, а транзистор надо дополнительно охлаждать.
4. Плата содержит стабилизатор питания ШИМ контроллера, благодаря чему входное напряжение может быть увеличено выше 15 Вольт.
5. При определенной комбинации входного и выходного напряжения происходит пробой силового транзистора. 🙁
В общем плата вполне работоспособна, но с некоторыми ограничениями о которых написано выше.
Подходит для питания устройств с небольшим потребляемым током в широком диапазоне входного напряжения, но для мощных устройств не пойдет из-за перегрева.
В интернете видел небольшой обзор этой платы, там результат немного другой, но скорее непонятно было то, что там указано насчет защиты. У меня она сработала один раз, напряжения на выходе не было пока не отключил питание платы, но как она определяет перегрузку я не понимаю, так как датчиков тока нет, хотя в даташите защита от КЗ заявлена и она срабатывала…
Надеюсь что обзор был интересен и полезен, если интересно, могу проверить работу в других комбинациях напряжений.
Небольшая скидка
Магазин дал еще купонов на скидку в 8%, может будет полезно
WSKD89, WS9H7T, WSNHZR, WSYZK7, WS3X3L
Товар предоставлен для написания обзора магазином. Обзор опубликован в соответствии с п.18 Правил сайта.
mysku.ru