Провод медный 4 квадрата в однофазной сети
Для начала, чтобы не опытные мастера и строители понимали в чём дело, и почему ответ на этот вопрос не однозначный, давайте разберём условие вопроса, а именно: что такое медный провод (какие они бывают) и что такое «4 квадрата».
1) Медные провода — исполнение этих проводов очень различное, так под одним сечением могут выпускаться разные провода, общее между ними только в том, что они медные и имеют одинаковый диаметр, а вот сам кабель и изоляция различаются. Кабеля могут быть как сплошные, так и многожильные, а изоляция выполнена из различных материалов. По маркировке это кабеля: ВВГ, NYM, ПВС, ШВВП, КГ, ВББШв, ПБПП, ПУНП, ППВ, ПВ1, ПВ3 и прочие.
2) «4 квадрата» — так в электрике обозначают провод диаметром в 4 миллиметра, имеется ввиду одна жила. В одном кабеле могут находится от одной и более жил, также они могут различаться по сечению.
3) Надо знать нагрузку, которая измеряется в Амперах. Данный показатель может иметь градацию в зависимости от условий эксплуатации кабеля.
Итак, для каждого кабеля будет своё значение нагрузки. При строительстве квартир в последнее время всё больше используют кабеля ВВГ, с них и начнём.
ВВГ
Если кабель проложен по воздуху, то допустимый ток нагрузки будет равен следующим показаниям, при условии, что сечение провода 4 квадрата:
- 2 жилы основные — 44 Ампера (минимум 36, перегрузка 40)
- 3 жилы основные — 37 Ампер (минимум 33, перегрузка 40)
- 4 жилы основные — 34 Ампера (минимум 33, перегрузка 37)
Если кабель проложен в земле, то допустимый ток нагрузки будет равен следующим показаниям, при условии, что сечение провода 4 квадрата:
- 2 жилы основные — 47 Ампер (перегрузка 54)
- 3 жилы основные — 47 Ампер (перегрузка 54)
- 4 жилы основные — 43 Ампера (перегрузка 50)
NYM
Если кабель проложен по воздуху, то допустимый ток нагрузки будет равен следующим показаниям, при условии, что сечение провода 4 квадрата:
- 1 жила — 41 Ампер (перегрузка 60)
- 3 жилы — 35 Ампер (перегрузка 49)
ПВС
Если кабель проложен по воздуху, то допустимый ток нагрузки будет равен следующим показаниям, при условии, что сечение провода 4 квадрата:
- 1 жила — 38 Ампер допустимый
ШВВП
Если кабель проложен по воздуху, то допустимый ток нагрузки будет равен следующим показаниям, при условии, что сечение провода 4 квадрата:
- 2 жилы основные — 32 Ампера
Остальные кабеля менее распространены при строительстве.
Из описания видно, что влияние на нагрузку происходит не только от того, как исполнен кабель, но также и где он проложен. Также в описании напряжения приведены при использовании тока в 220 Вольт, для тока в 380 Вольт нагрузка на кабель будет другая!
________________
Остаётся открытым вопрос о том, какие потребители можно вешать на медный кабель с сечением в 4 квадрата. По характеристикам, вне зависимости от исполнения и способа прокладки, данный кабель в 4 миллиметра выдерживает мощность всех бытовых приборов (они все исполнены под нагрузку не более 32 Ампер). В число бытовых приборов также можно включить и электроплиту, большинство которых (имеется ввиду бытовые, не профессиональные!) рассчитаны также на нагрузку до 32 Ампер.
________________
При подключении бытовой техники с увеличенной нагрузкой и при использовании кабеля на 4 квадрата, обращайте внимание и на применение розеток, они также должны быть рассчитаны на нагрузку в 32 ампера!
Смотрите характеристики прямо на корпусе розетки.
Зависимость сечения кабеля и провода от токовых нагрузок и мощности
При проектировании схемы любой электрической установки и монтаже, выбор сечения проводов и кабелей является обязательным этапом. Чтобы правильно подобрать силовой провод нужного сечения, необходимо учитывать величину максимального потребления.
Сечения проводов измеряется в квадратных милиметрах или «квадратах». Каждый «квадрат» алюминиевого провода способен пропустить через себя в течение длительного времени нагреваясь до допустимых пределов максимум — только 4 ампера, а медный провода 10 ампер тока. Соответственно, если какой-то электропотребитель потребляет мощность равную 4 киловаттам (4000 Ватт), то при напряжении 220 вольт сила тока будет равна 4000/220=18,18 ампер и для его питания достаточно подвести к нему электричество медным проводом сечением 18,18/10=1,818 квадрата. Правда в этом случае провод будет работать на пределе своих возможностей, поэтому следует взять запас по сечению в размере не менее 15%.
Из расчета достаточной механической прочности открытая силовая проводка обычно выполняется проводом с сечением не менее 4 кв. мм. Если требуется с большей точностью знать длительно допустимую токовую нагрузку для медных проводов и кабелей, то можно воспользоваться таблицами.
Медные жилы проводов и кабелей |
||||
Сечение токопроводящей жилы, мм. | Напряжение, 220 В | |||
ток, А | мощность, кВт | ток, А | мощность, кВт | |
1,5 | 19 | 4,1 | 16 | 10,5 |
2,5 | 27 | 5,9 | 25 | 16,5 |
4 | 38 | 8,3 | 30 | 19,8 |
6 | 46 | 10,1 | 40 | 26,4 |
10 | 70 | 15,4 | 50 | 33,0 |
16 | 85 | 18,7 | 75 | 49,5 |
25 | 115 | 25,3 | 90 | 59,4 |
35 | 135 | 29,7 | 115 | 75,9 |
50 | 175 | 38,5 | 145 | 95,7 |
70 | 215 | 47,3 | 180 | 118,8 |
95 | 260 | 57,2 | 220 | 145,2 |
120 | 300 | 66,0 | 260 | 171,6 |
Алюминиевые жилы проводов и кабелей |
||||
Сечение токопроводящей жилы, мм. | Напряжение, 220 В | Напряжение, 380 В | ||
ток, А | мощность, кВт | ток, А | мощность, кВт | |
2,5 | 20 | 4,4 | 19 | 12,5 |
4 | 28 | 6,1 | 23 | 15,1 |
6 | 36 | 7,9 | 30 | 19,8 |
10 | 50 | 11,0 | 39 | 25,7 |
16 | 60 | 13,2 | 55 | 36,3 |
25 | 85 | 18,7 | 70 | 46,2 |
35 | 100 | 22,0 | 85 | 56,1 |
50 | 135 | 29,7 | 110 | 72,6 |
70 | 165 | 36,3 | 140 | 92,4 |
95 | 200 | 44,0 | 170 | 112,2 |
120 | 230 | 50,6 | 200 | 132,0 |
Допустимый длительный ток для проводов и шнуров с резиновой и поливинилхлоридной изоляцией с медными жилами к примеру кабель МКЭШВнг |
||||||
Сечение токопроводящей жилы, мм. |
Открыто | Ток, А, для проводов проложенных в одной трубе | ||||
Двух одножильных | Трех одножильных | Четырех одножильных | Одного двухжильного | Одного трехжильного | ||
0,5 | 11 | — | — | — | — | — |
0,75 | 15 | — | — | — | — | — |
1 | 17 | 16 | 15 | 14 | 15 | 14 |
1,2 | 20 | 18 | 16 | 15 | 16 | 14,5 |
1,5 | 23 | 19 | 17 | 16 | 18 | 15 |
2 | 26 | 24 | 22 | 20 | 23 | 19 |
2,5 | 30 | 27 | 25 | 25 | 25 | 21 |
3 | 34 | 32 | 28 | 26 | 28 | 24 |
4 | 41 | 38 | 35 | 30 | 32 | 27 |
5 | 46 | 42 | 39 | 34 | 37 | 31 |
6 | 50 | 46 | 42 | 40 | 40 | 34 |
8 | 62 | 54 | 51 | 46 | 48 | 43 |
10 | 80 | 70 | 60 | 50 | 55 | 50 |
16 | 100 | 85 | 80 | 75 | 80 | 70 |
25 | 140 | 115 | 100 | 90 | 100 | 85 |
35 | 170 | 135 | 125 | 115 | 125 | 100 |
50 | 215 | 185 | 170 | 150 | 160 | 135 |
70 | 270 | 225 | 210 | 185 | 195 | 175 |
95 | 330 | 275 | 255 | 225 | 245 | 215 |
120 | 385 | 315 | 290 | 260 | 295 | 250 |
150 | 440 | 360 | 330 | — | — | — |
185 | 510 | — | — | — | — | — |
240 | 605 | — | — | — | — | — |
300 | 695 | — | — | — | — | — |
400 | 830 | — | — | — | — | — |
Допустимый длительный ток для проводов и шнуров с резиновой и поливинилхлоридной изоляцией с алюминиевыми жилами |
||||||
Сечение токопроводящей жилы, мм. | Открыто | Ток, А, для проводов проложенных в одной трубе | ||||
Двух одножильных | Трех одножильных | Четырех одножильных | Одного двухжильного | Одного трехжильного | ||
2 | 21 | 19 | 18 | 15 | 17 | 14 |
2,5 | 24 | 20 | 19 | 19 | 19 | 16 |
3 | 27 | 24 | 22 | 21 | 22 | 18 |
4 | 32 | 28 | 28 | 23 | 25 | 21 |
5 | 36 | 32 | 30 | 27 | 28 | 24 |
6 | 39 | 36 | 32 | 30 | 31 | 26 |
8 | 46 | 43 | 40 | 37 | 38 | 32 |
10 | 60 | 50 | 47 | 39 | 42 | 38 |
16 | 75 | 60 | 60 | 55 | 60 | 55 |
25 | 105 | 85 | 80 | 70 | 75 | 65 |
35 | 130 | 100 | 95 | 85 | 95 | 75 |
50 | 165 | 140 | 130 | 120 | 125 | 105 |
70 | 210 | 175 | 165 | 140 | 150 | 135 |
95 | 255 | 215 | 200 | 175 | 190 | 165 |
120 | 295 | 245 | 220 | 200 | 230 | 190 |
150 | 340 | 275 | 255 | — | — | — |
185 | 390 | — | — | — | — | — |
240 | 465 | — | — | — | — | — |
300 | 535 | — | — | — | — | — |
400 | 645 | — | — | — | — | — |
Допустимый длительный ток для проводов с медными жилами с резиновой изоляцией в металлических защитных оболочках и кабелей с медными жилами с резиновой изоляцией в свинцовой, поливинилхлоридной, |
|||||||
Сечение токопроводящей жилы, мм. | Ток*, А, для проводов и кабелей | ||||||
одножильных | двухжильных | трехжильных | |||||
при прокладке | |||||||
в воздухе | в воздухе | в земле | в воздухе | в земле | |||
1,5 | 23 | 19 | 33 | 19 | 27 | ||
2,5 | 30 | 27 | 44 | 25 | 38 | ||
4 | 41 | 38 | 55 | 35 | 49 | ||
6 | 50 | 50 | 70 | 42 | 60 | ||
10 | 80 | 70 | 105 | 55 | 90 | ||
16 | 100 | 90 | 135 | 75 | 115 | ||
25 | 140 | 115 | 175 | 95 | 150 | ||
35 | 170 | 140 | 210 | 120 | 180 | ||
50 | 215 | 175 | 265 | 145 | 225 | ||
70 | 270 | 215 | 320 | 180 | 275 | ||
95 | 325 | 260 | 385 | 220 | 330 | ||
120 | 385 | 300 | 445 | 260 | 385 | ||
150 | 440 | 350 | 505 | 305 | 435 | ||
185 | 510 | 405 | 570 | 350 | 500 | ||
240 | 605 | — | — | — | — |
* Токи относятся к кабелям и проводам с нулевой жилой и без нее.
Допустимый длительный ток для кабелей с алюминиевыми жилами с резиновой или пластмассовой изоляцией в свинцовой, поливинилхлоридной и резиновой оболочках, бронированных и небронированных |
|||||||
Сечение токопроводящей жилы, мм. | Ток, А, для проводов и кабелей | ||||||
одножильных | двухжильных | трехжильных | |||||
при прокладке | |||||||
в воздухе | в воздухе | в земле | в воздухе | в земле | |||
2,5 | 23 | 21 | 34 | 19 | 29 | ||
4 | 31 | 29 | 42 | 27 | 38 | ||
6 | 38 | 38 | 55 | 32 | 46 | ||
10 | 60 | 55 | 80 | 42 | 70 | ||
16 | 75 | 70 | 105 | 60 | 90 | ||
25 | 105 | 90 | 135 | 75 | 115 | ||
35 | 130 | 105 | 160 | 90 | 140 | ||
50 | 165 | 135 | 205 | 110 | 175 | ||
70 | 210 | 165 | 245 | 140 | 210 | ||
95 | 250 | 200 | 295 | 170 | 255 | ||
120 | 295 | 230 | 340 | 200 | 295 | ||
150 | 340 | 270 | 390 | 235 | 335 | ||
185 | 390 | 310 | 440 | 270 | 385 | ||
240 | 465 | — | — | — | — |
Допустимые длительные токи для четырехжильных кабелей с пластмассовой изоляцией на напряжение до 1 кВ могут выбираться по данной таблице как для трехжильных кабелей, но с коэффициентом 0,92.
Сводная таблица сечений проводов, тока, мощности и характеристик нагрузки | |||||
Сечение медных жил проводов и кабелей, кв.мм | Допустимый длительный ток нагрузки для проводов и кабелей, А | Номинальный ток автомата защиты, А | Предельный ток автомата защиты, А | Максимальная мощность однофазной нагрузки при U=220 B | Характеристика примерной однофазной бытовой нагрузки |
1,5 | 19 | 10 | 16 | 4,1 | группа освещения и сигнализации |
2,5 | 27 | 16 | 20 | 5,9 | розеточные группы и электрические полы |
4 | 38 | 25 | 32 | 8,3 | водонагреватели и кондиционеры |
6 | 46 | 32 | 40 | 10,1 | электрические плиты и духовые шкафы |
10 | 70 | 50 | 63 | 15,4 | вводные питающие линии |
В таблице приведены данные на основе ПУЭ, для выбора сечений кабельно-проводниковой продукции, а также номинальных и максимально возможных токов автоматов защиты, для однофазной бытовой нагрузки чаще всего применяемой в быту.
Наименьшие допустимые сечения кабелей и проводов электрических сетей в жилых зданиях | |
Наименование линий | Наименьшее сечение кабелей и проводов с медными жилами, кв.мм |
Линии групповых сетей | 1,5 |
Линии от этажных до квартирных щитков и к расчетному счетчику | 2,5 |
Линии распределительной сети (стояки) для питания квартир | 4 |
Надеемся данная информация была полезна для Вас. Мы же напоминаем что у нас Вы можете купить кабель МКЭКШВнг отличного качества по низкой цене.
Какую нагрузку выдерживает медный провод различного сечения
Почему следует выбирать правильное сечение
Медные проводники востребованы на рынке, поскольку они обладают гибкостью, стойкостью к перегибам. Алюминиевые проводники после нескольких перегибов начинают ломаться. Кроме того, при одинаковом сечении проводов, медь имеет более высокую проводимость. Подбирая сечение медных проводов, необходимо правильно выбирать сечение. При выборе большого сечения, можно потратиться впустую, а при выборе меньшего сечения можно спровоцировать короткое замыкание, пожар. Безопасность служит главной причиной правильного выбора сечения проводника, в соответствии с имеющимися правилами и табличными данными от ПУЭ.
Правильно подобранное сечение кабеля не даст смонтированной сети перегреться, сможет помочь выдержать кратковременную нагрузку, которая в несколько раз превышает номинальный показатель величины. Это формирует определенный токовый запас при увеличении количества, мощности сетевых энергопотребителей. Загруженный по максимальному показателю провод не будет нагреваться, создавая опасность возгорания. Стоит отметить, что если кабель проложен закрытым способом и перегрелся, отыскать, где точно находится место его деформации сложно. Требуется заменять проводку на протяжении всего участка. Штробить стены и впоследствии выполнять ремонт помещения.
Какую нагрузку выдерживает медный провод различного сечения?
Чтобы определить уровень нагрузки любого медного кабеля, необходимо использовать следующее правило: 1 квадратный миллиметр медного провода выдерживает 10 ампер тока. Это значит, что необходимо сделать перевод амперов в киловатты для лучшего понимания. 10 ампер равняется примерно 2 киловатта мощности, в среднем. Поэтому, кабель, который имеет сечение в 1,5 квадратных миллиметров, выдерживает 3,5 киловатт. Такая же методика подсчета действует на проводники с другими сечениями.
При этом важно понимать, что в трехфазной сети на 380 вольт параметры тока с мощность другие. Также много зависит от того, какие материалы были применены, чтобы изготовить проводник. Медные с алюминиевыми проводами, имеющими одно сечение, выдерживают разную нагрузку. Медь способна выдержать больше нагрузки, чем алюминий.
Таблица расчета нагрузки медных проводников
Провод на 1,5 квадратных миллиметров сможет выдержать 3,3 киловатта, провод на 2,5 квадратных миллиметров выдержит 4,5 киловатта. Провод, который достигает 4 квадратных миллиметров сечением выдерживает около 6 киловатт. Данные, представленные в таблице, актуальны для однофазной цепи, рассчитанной на 220 вольт, и медных проводов. В трехфазной цепи показатели будут другими.
Выбирая сечение следует учитывать несколько важных параметров. Это нагрузка, оказываемая на проводники, и фаза. То есть, необходимо знать общее количество электрических приборов. Отталкиваясь от этого параметра, можно уже выбирать автоматический выключатель, номинал которого будет близок к силе тока, которую может пропустить через себя провод.
Чтобы подключить обычную домашнюю розетку, достаточно будет использовать медный провод, рассчитанный на 2,5 миллиметровое сечение в квадрате. К такой розетке возможно будет сделать подключение утюга, гладильной доски и даже обогревателя с мощностью в 3 киловатта. При этом в сумме мощность всех электрических потребителей не должна быть больше 3,5 киловатт. Это около 16 ампер.
Для лампы необходим кабель, имеющий сечение в 1,5 квадратных миллиметров. На кухню с электрической плитой следует выбирать провод с мощностным запасом. Как правило, достаточно 6 квадратных миллиметров, в зависимости от мощности электрической плиты.
В результате, имея представление о нагрузке, которая выдерживает проводник, можно сделать правильный выбор. При этом следует внимательно учитывать материалы проводникового состава со способами и монтажа.
Выбор сечения кабеля — stroka.by
Кабель обычно состоит из 2-4 жил. Сечение (точнее, площадь поперечного сечения) жилы определяется ее диаметром.
Напомним: площадь круга S = 0,78d², где d — диаметр круга. Исходя из практических соображений, при малых значениях силы тока сечение медной жилы берут не менее 1 мм², а алюминиевой — 2 мм².
При достаточно больших токах сечение провода выбирают по подключаемой мощности.
Обычно исходят из расчета мощности, что нагрузка величиной 1 кВт требует 1,57 мм² сечения жилы. Отсюда следуют приближенные значения сечений провода, которых следует придерживаться при выборе его диаметра. Для алюминиевых проводов это 5 А на 1 мм²., для медных — 8 А на 1 мм². Проще говоря, если у вас стоит проточный водонагреватель на 5 кВт, то подключать его надо проводом, рассчитанным не менее чем на 25 А, и для медного провода сечение должно быть не менее 3,2 мм². Учтите, из ряда предпочтительных величин сечений (0,75; 1; 1,5; 2,5; 4; 6 мм² и т. д.) для алюминиевых проводов сечение выбирают на ступень выше, чем для медных, так как их проводимость составляет примерно 62% от проводимости медных.
Например, если по расчетам нагрузки для меди нужна величина сечения 2,5 мм², то для алюминия следует брать 4 мм², если же для меди нужно 4 мм², то для алюминия — 6 мм² и т. д.
А вообще кабель лучше выбирать большего поперечного сечения, чем требуется, — вдруг вы захотите подключить еще что-нибудь? Кроме того, необходимо проверить, согласуется ли сечение проводов с максимальной фактической нагрузкой, а также с током защитных предохранителей или автоматического выключателя, которые обычно находятся рядом со счетчиком.
В таблицах приводится зависимость сечения кабеля, проводов и автомобильных гибких многожильных проводников в зависимости от силы тока и мощности нагрузки.
Таблица выбора сечения кабеля при прокладке проводов открыто и в трубе Сечение | Проложенные открыто | Проложенные в трубе | ||||||||||
Медь | Алюминий | Медь | Алюминий | |||||||||
Ток | Мощность, кВт | Ток | Мощность, кВт | Ток | Мощность, кВт | Ток | Мощность, кВт | |||||
А | 220в | 380в | А | 220в | 380в | А | 220в | 380в | А | 220в | 380в | |
0,5 | 11 | 2,4 |
|
|
|
|
|
|
|
|
|
|
0,75 | 15 | 3,3 |
|
|
|
|
|
|
|
|
|
|
1,0 | 17 | 3,7 | 6,4 |
|
|
| 14 | 3,0 | 5,3 |
|
|
|
1,5 | 23 | 5,0 | 8,7 |
|
|
| 15 | 3,3 | 5,7 |
|
|
|
2,0 | 26 | 5,7 | 9,8 | 21 | 4,6 | 7,9 | 19 | 4,1 | 7,2 | 14,0 | 3,0 | 5,3 |
2,5 | 30 | 6,6 | 11,0 | 24 | 5,2 | 9,1 | 21 | 4,6 | 7,9 | 16,0 | 3,5 | 6,0 |
4,0 | 41 | 9,0 | 15,0 | 32 | 7,0 | 12,0 | 27 | 5,9 | 10,0 | 21,0 | 4,6 | 7,9 |
6,0 | 50 | 11,0 | 19,0 | 39 | 8,5 | 14,0 | 34 | 7,4 | 12,0 | 26,0 | 5,7 | 9,8 |
10,0 | 80 | 17,0 | 30,0 | 60 | 13,0 | 22,0 | 50 | 11,0 | 19,0 | 38,0 | 8,3 | 14,0 |
16,0 | 100 | 22,0 | 38,0 | 75 | 16,0 | 28,0 | 80 | 17,0 | 30,0 | 55,0 | 12,0 | 20,0 |
25,0 | 140 | 30,0 | 53,0 | 105 | 23,0 | 39,0 | 100 | 22,0 | 38,0 | 65,0 | 14,0 | 24,0 |
35,0 | 170 | 37,0 | 64,0 | 130 | 28,0 | 49,0 | 135 | 29,0 | 51,0 | 75,0 | 16,0 | 28,0 |
Выбор сечения одиночного проводника гибкого многожильного автомобильного провода:
Номинальное сечение провода, мм² | Сила тока в одиночном проводе, А при длительной нагрузке и при температуре окружающей среды, оС | |||
20 оС | 30 оС | 50 оС | 80 оС | |
0,5 | 17,5 | 16,5 | 14,0 | 9,5 |
0,75 | 22,5 | 21,5 | 17,5 | 12,5 |
1,0 | 26,5 | 25,0 | 21,5 | 15,0 |
1,5 | 33,5 | 32,0 | 27,0 | 19,0 |
2,5 | 45,5 | 43,5 | 37,5 | 26,0 |
4,0 | 61,5 | 58,5 | 50,0 | 35,5 |
6,0 | 80,5 | 77,0 | 66,0 | 47,0 |
16,0 | 149,0 | 142,5 | 122,0 | 88,5 |
Примечание: при прокладке проводов сечением 0,5 — 4,0 мм² в жгутах, в поперечном сечении которых по трассе содержится от двух до семи проводов, сила допустимого тока в проводе составляет 0,55 от силы тока в одиночном проводе согласно таблице, а при наличии 8-19 проводов — 0,38 от силы тока в одиночном проводе.
Расчет сечения кабеля
Сечение кабеля — это площадь среза токоведущей жилы. Если срез жилы круглый (как в большинстве случаев) и состоит из одной проволочки — то площадь/сечение определяется по формуле площади круга. Если в жиле много проволочек, то сечением будет сумма сечений всех проволочек в данной жиле.
Величины сечения во всех странах стандартизированы, причем стандарты бывшего СНГ и Европы в этой части полностью совпадают. В нашей стране документом, которым регулируется этот вопрос, являются «Правила устройства электроустановок» или кратко — ПУЭ.
Сечение кабеля выбирается исходя из нагрузок с помощью специальных таблиц, называемых «Допустимые токовые нагрузки на кабель.» Если нет никакого желания разбираться в этих таблицах — то Вам вполне достаточно знать, что на розетки желательно брать медный кабель сечением 1,5-2,5мм², а на освещение — 1,0-1,5мм². Для ввода одной фазы в рядовую 2-3 комнатную квартиру вполне хватит 6,0мм². Все равно на Ваших 40-80 м² большего оборудования не поместиться, даже с учетом электроплиты.
Многие электрики для «прикидки» нужного сечения считают, что 1мм² медного провода может пропустить через себя 10А электрического тока: соответственно 2,5 мм² меди способны пропустить 25А, а 4,0 мм² — 40А и т.д. Если Вы немного проанализируете таблицу выбора сечения кабеля, то увидите, что такой метод годится только для прикидки и только для кабелей сечением не выше 6,0мм².
Ниже дана сокращенная таблица выбора сечения кабеля до 35 мм² в зависимости от токовых нагрузок. Там же для Вашего удобства приведена суммарная мощность электрооборудования при 1-фазном (220В) и 3-фазном (380В) потреблении. Обратите внимание, что при прокладке кабеля в трубе (т.е. в любых закрытых пространствах, как например, в стене) возможные токовые нагрузки на кабель должны быть меньше, чем при прокладке открыто. Это связано с тем, что кабель в процессе эксплуатации нагревается, а теплоотдача в стене или в земле значительно ниже, чем на открытом пространстве.
Важно Когда нагрузка называется в кВт — то речь идет о совокупной нагрузке. Т.е. для однофазного потребителя нагрузка будет указана по одной фазе, а для трехфазного — совокупно по всем трем. Когда величина нагрузки названа в амперах (А) — речь всегда идет о нагрузке на одну жилу (или фазу).
Сечение кабеля, мм² | Проложенные открыто | Проложенные в трубе | ||||||||||
медь | алюминий | медь | алюминий | |||||||||
ток, А | кВт | ток, А | кВт | ток, А | кВт | ток, А | кВт | |||||
220В | 380В | 220В | 380В | 220В | 380В | 220В | 380В | |||||
0,5 | 11 | 2,4 | ||||||||||
0,75 | 15 | 3,3 | ||||||||||
1,0 | 17 | 3,7 | 6,4 | 14 | 3,0 | 5,3 | ||||||
1,5 | 23 | 5,0 | 8,7 | 15 | 3,3 | 5,7 | ||||||
2,5 | 30 | 6,6 | 11,0 | 24 | 5,2 | 9,1 | 21 | 4,6 | 7,9 | 16,0 | 3,5 | 6,0 |
4,0 | 41 | 9,0 | 15,0 | 32 | 7,0 | 12,0 | 27 | 5,9 | 10,0 | 21,0 | 4,6 | 7,9 |
6,0 | 50 | 11,0 | 19,0 | 39 | 8,5 | 14,0 | 34 | 7,4 | 12,0 | 26,0 | 5,7 | 9,8 |
10,0 | 80 | 17,0 | 30,0 | 60 | 13,0 | 22,0 | 50 | 11,0 | 19,0 | 38,0 | 8,3 | 14,0 |
16,0 | 100 | 22,0 | 38,0 | 75 | 16,0 | 28,0 | 80 | 17,0 | 30,0 | 55,0 | 12,0 | 20,0 |
25,0 | 140 | 30,0 | 53,0 | 105 | 23,0 | 39,0 | 100 | 22,0 | 38,0 | 65,0 | 14,0 | 24,0 |
35,0 | 170 | 37,0 | 64,0 | 130 | 28,0 | 49,0 | 135 | 29,0 | 51,0 | 75,0 | 16,0 | 28,0 |
Если Вы внимательно изучили приведенную таблицу и таки желаете самостоятельно определить необходимое Вам сечение кабеля, например, для ввода в дом, то Вам также необходимо знать следующее. Настоящая таблица касается кабелей и проводов в резиновой и пластмассовой изоляции. Это такие широко распространенные марки как: ПВС, ВВП, ВПП, ППВ, АППВ, ВВГ. АВВГ и ряд других. На кабеля в бумажной изоляции есть своя таблица, на не изолированные провода и шины — своя. При расчетах сечения кабеля специалист должен также учитывать методы прокладки кабеля: в лотках, пучками и т.п. Кроме того, величины из таблиц о допустимых токовых нагрузках должны быть откорректированы следующими снижающими коэффициентами:
поправочный коэффициент, соответствующий сечению кабеля и расположению его в блоке;
поправочный коэффициент на температуру окружающей среды;
поправочный коэффициент для кабелей, прокладываемых в земле;
поправочный коэффициент на различное число работающих кабелей, проложенных рядом.
Если и это Вас не останавливает — то открывайте справочник под ред. Белоруссова на стр.503, а мы снимаем шляпу.
Если деньги для Вас не проблема, тогда смело увеличивайте справочное сечение жилы на 50%, и спите спокойно: так как даже все поправочные коэффициенты в сумме не дадут больше.
При расчете необходимого сечения кабеля основной критерий — это количество тепла, выделяемого кабелем при прохождении через него электрического тока и температура окружающей среды. Вообще-то, любой электропроводник может пропустить через себя очень много тока, вплоть до температуры своего плавления, а это в десятки раз больше, чем указано в справочниках. Обратите внимание, что в справочниках приведены величины для длительных токовых нагрузок на кабель. А кратковременные нагрузки могут быть гораздо выше. Т.е. запас всегда есть. Но при условии, что Вы приобрели кабель, произведенный по ГОСТу. Если же Вам вместо медного кабеля продали нечто, сделанное из какого-то сплава и покрытое пластиком из вторичного полиэтилена (из использованных кульков и ПЭТ-бутылок), то зачем Вам все эти таблицы: см. статью «Как выбрать кабель»
Токовые нагрузки в сетях с постоянным током
В сетях с постоянным током расчет сечения идет несколько по другому. Сопротивление проводника постоянному
напряжению гораздо выше, чем переменному (при переменном токе сопротивлением на длинах до 100 м вообще пренебрегают).
Кроме этого, для потребителей постоянного тока как правило очень важно, чтобы напряжение на концах было не ниже 0,5В (для потребителей
переменного тока, как известно колебания напряжения в пределах 10% в любую строону допустимы). Есть формула, определяющая
насколько упадет напряжение на концах по сравнению с базовым напряжением, в зависимости от длины проводника, его удельного сопротивления
и силы тока в цепи:
U = ((p l) / S) I, где
U — напряжение постоянного тока, В
p — удельное сопротивление провода, Ом*мм2/м
l — длина провода, м
S — площадь поперечного сечения, мм2
I — сила тока, А
Зная величины указанных показателей достаточно легко рассчитать нужное Вам сечение: методом подставновки, или с помощью простйеших арифметических
действий над данным уравнением.
Если же падение постоянного напряжения на концах не имеет значения, то для для выбора сечения можно пользоваться таблицей для переменного тока, но при этом корректировать величины тока на 15% в сторону уменьшения, т.е. при постоянном токе справочные сечения кабеля могут пропускать тока на 15 % меньше, чем указано в таблице. Подобное правило также работает для выбора автоматических выключателей для сетей с постоянным током, например: для цепей с нагрузкой в 25А, нужно брать автомат на 15% меньшего номинала, в нашем случае подходит предыдущий типоразмер автомата — 20А.
Удельное электрическое сопротивление некоторых металлов, применяемых в электротехнике
Металл | Сопротивление, Ом·мм2/м |
Серебро | 0,015…0,0162 |
Медь | 0,01724…0,018 |
Золото | 0,023 |
Алюминий | 0,0262. ..0,0295 |
Вольфрам | 0,053…0,055 |
Цинк | 0,059 |
Никель | 0,087 |
Железо | 0,098 |
Платина | 0,107 |
Олово | 0,12 |
Свинец | 0,217…0,227 |
Внимание: это авторская статья, поэтому при использовании материала просьба делать ссылку на первоисточник.
author: Оleg Stolyarov
Сколько киловатт выдерживает провод 6 квадратов медь
Стандартная квартирная электропроводка рассчитывается на максимальный ток потребления при длительной нагрузке 25 ампер
(на такую силу тока выбирается и автоматический выключатель, который устанавливается на вводе проводов в квартиру)
выполняется медным проводом сечением 4,0 мм2, что соответствует диаметру провода 2,26 мм и мощности нагрузки до 6 кВт
.
Согласно требований п 7.1.35 ПУЭ сечение медной жилы для квартирной электропроводки должно быть не менее 2,5 мм2,
что соответствует диаметру проводника 1,8 мм и силе тока нагрузки 16 А. К такой электропроводке можно подключать электроприборы суммарной мощностью до 3,5 кВт.
Что такое сечение провода и как его определить
Чтобы увидеть сечение провода достаточно его перерезать поперек и посмотреть на срез с торца. Площадь среза и есть сечение провода.
Чем оно больше, тем большую силу тока может передать провод.
Как видно из формулы, сечение провода легко вычислить по его диаметру. Достаточно величину диаметра жилы провода умножить саму на себя и на 0,785. Для вычисления сечения многожильного провода нужно вычислить сечение одной жилы и умножить на их количество.
Диаметр проводника можно определить с помощью штангенциркуля с точностью до 0,1 мм или микрометра с точностью до 0,01 мм. Если нет под рукой приборов, то в таком случае выручит обыкновенная линейка.
Тепловой расчет с использованием поправочных коэффициентов
Для нескольких линий в одном кабель-канале табличные значения максимального тока следует умножить на соответствующий коэффициент:
- 0.68 — для числа проводников от 2-х до 5 шт.
- 0.63 — для проводников от 7 до 9 шт.
- 0.6 — для проводников от 10 до 12 шт.
Коэффициент относится именно к проводам (жилам), а не к количеству проходящих линий. При расчете количества проложенных жил не берется во внимание нулевой рабочий провод или заземляющий провод. Согласно ПУЭ и ГОСТ 16442-80 они на нагрев проводов не влияют при прохождении нормальных токов.
Суммируя вышесказанное, получается, что для корректного и точного подбора сечения проводов необходимо знать:
- Сумму всех максимальных мощностей электроприборов.
- Характеристики сети: количество фаз и напряжение.
- Характеристики материала для кабеля.
- Табличные данные и коэффициенты.
При этом мощность не является основным показателем для отдельной линии кабеля или всей внутренней системы электроснабжения. При подборе сечения обязательно следует рассчитать максимальный ток нагрузки, а после сверить его с номинальным током автомата домашней сети.
Выбор сечения медного провода электропроводки по силе тока
Величина электрического тока обозначается буквой «А
» и измеряется в Амперах. При выборе действует простое правило,
чем сечение провода больше, тем лучше, по этому округляют результат в большую сторону.
Таблица для выбора сечения и диаметра медного провода в зависимости от силы тока | ||||||||||||||
Максимальный ток, А | 1,0 | 2,0 | 3,0 | 4,0 | 5,0 | 6,0 | 10,0 | 16,0 | 20,0 | 25,0 | 32,0 | 40,0 | 50,0 | 63,0 |
Стандартное сечение, мм2 | 0,35 | 0,35 | 0,50 | 0,75 | 1,0 | 1,2 | 2,0 | 2,5 | 3,0 | 4,0 | 5,0 | 6,0 | 8,0 | 10,0 |
Диаметр, мм | 0,67 | 0,67 | 0,80 | 0,98 | 1,1 | 1,2 | 1,6 | 1,8 | 2,0 | 2,3 | 2,5 | 2,7 | 3,2 | 3,6 |
Приведенные мною данные в таблице основаны на личном опыте и гарантируют надежную работу электропроводки при самых неблагоприятных условиях ее прокладки и эксплуатации. При выборе сечения провода по величине тока не имеет значение, переменный это ток или постоянный. Не имеют значения также величина и частота напряжения в электропроводке, это может быть бортовая сеть автомобиля постоянного тока на 12 В или 24 В, летательного аппарата на 115 В частотой 400 Гц, электропроводка 220 В или 380 В частотой 50 Гц, высоковольтная линия электропередачи на 10000 В.
Если неизвестен ток потребления электроприбором, но известны напряжение питания и мощность, то рассчитать ток можно с помощью приведенного ниже онлайн калькулятора.
Онлайн калькулятор для определения силы тока по потребляемой мощности | |
Потребляемая мощность, Вт: | |
Напряжение питания, В: |
Следует отметить, что на частотах более 100 Гц в проводах при протекании электрического тока начинает проявляться скин-эффект, заключающийся в том, что с увеличением частоты ток начинает «прижиматься» к внешней поверхности провода и фактическое сечение провода уменьшается. Поэтому выбор сечения провода для высокочастотных цепей выполняется по другим законам.
Кратковременные режимы работы
Максимально допустимый кратковременный ток для медных проводов при режимах работы с длительностью циклов до 10 мин и рабочими периодами между ними не более 4 мин приводится к длительному режиму работы, если сечение не превышает 6 мм2. При сечении выше 6 мм2: Iдоп = In∙0,875/√Тп.в.,
где Тп.в — отношение длительности рабочего периода к продолжительности цикла.
Отключение питания при перегрузках и коротких замыканиях определяется техническими характеристиками применяемых защитных автоматов. Ниже приведена схема небольшого щита управления квартиры. Питание от счетчика поступает на вводной автомат DP MCB мощностью 63 А, который защищает проводку до автоматов отдельных линий мощностью 10 А, 16 А и 20 А.
Важно! Пороги срабатывания автоматов должны быть меньше максимально допустимого тока проводки и выше нагрузочного тока. В таком случае каждая линия будет надежно защищена.
Определение нагрузочной способности электропроводки 220 В выполненной из алюминиевого провода
В давно построенных домах электропроводка, как правило, выполнена из алюминиевых проводов. Если соединения в распределительных коробках выполнены правильно, срок службы алюминиевой проводки может составлять и сто лет. Ведь алюминий практически не окисляется, и срок службы электропроводки будет определяться только сроком службы пластмассовой изоляции и надежностью контактов в местах присоединения.
В случае подключения дополнительных энергоемких электроприборов в квартире с алюминиевой электропроводкой необходимо определить по сечению или диаметру жил проводов способность ее выдержать дополнительную мощность. По приведенной ниже таблице это легко сделать.
Таблица выбора сечения и диаметра алюминиевого провода для предельной нагрузки | |||||||||||||||||
Диаметр, мм | 1,6 | 1,8 | 2,0 | 2,3 | 2,5 | 2,7 | 3,2 | 3,6 | 4,5 | 5,6 | 6,2 | ||||||
Сечение провода, мм2 | 2,0 | 2,5 | 3,0 | 4,0 | 5,0 | 6,0 | 8,0 | 10,0 | 16,0 | 25,0 | 35,0 | ||||||
Максимальный ток при длительной нагрузке, А | 14 | 16 | 18 | 21 | 24 | 26 | 32 | 38 | 55 | 65 | 75 | ||||||
Максимальная мощность нагрузки, киловатт (BA) | 3,0 | 3,5 | 4,0 | 4,6 | 5,3 | 5,7 | 6,8 | 8,4 | 12,1 | 14,3 | 16,5 |
Если у Вас проводка в квартире выполнена из алюминиевых проводов и возникла необходимость подключить вновь установленную розетку в распределительной коробке медными проводами, то такое соединение выполняется в соответствии с рекомендациями статьи Соединение алюминиевых проводов.
Выбор проводки для отдельных групп потребителей
После того как выбран кабель для подключения к сети и для него подобран защищающий от перегрузок и коротких замыканий автомат ввода, необходимо подобрать провода для каждой группы потребителей.
Нагрузка разделяется на осветительную и силовую. Самым мощным потребителем в доме является кухня, где устанавливаются электроплита, стиральная и посудомоечная машины, холодильник, микроволновка и другие электроприборы.
Для каждой розетки выбираются провода на 2,5 мм2. По таблице для скрытой проводки он пропустит 21 А. Схема снабжения обычно радиальная — от распределительной коробки. Поэтому к коробке должны подходить провода на 4 мм2. Если розетки соединены шлейфом, следует учитывать, что сечению 2,5 мм2 соответствует мощность 4,6 кВт. Поэтому суммарная нагрузка на них не должна ее превышать. Здесь есть один недостаток: при выходе из строя одной розетки, остальные также могут оказаться неработоспособными.
На бойлер, электроплиту, кондиционер и другие мощные нагрузки целесообразно подключать отдельный провод с автоматом. В ванную комнату также делается отдельный ввод с автоматом и УЗО.
На освещение идет провод на 1,5 мм2. Сейчас многие применяют основное и дополнительное освещение, где может потребоваться большее сечение.
Расчет сечения провода электропроводки по мощности подключаемых электроприборов
Для выбора сечения жил провода кабеля при прокладке электропроводки в квартире или доме нужно проанализировать парк имеющихся электробытовых приборов с точки зрения одновременного их использования. В таблице представлен перечень популярных бытовых электроприборов с указанием потребляемого тока в зависимости от мощности. Вы можете узнать потребляемую мощность своих моделей самостоятельно из этикеток на самих изделиях или паспортам, часто параметры указывают на упаковке.
В случае если сила потребляемого тока электроприбором неизвестна, то ее можно измерять с помощью амперметра.
Таблица потребляемой мощности и силы тока бытовыми электроприборами при напряжении питания 220 В
Обычно мощность потребления электроприборов указывается на корпусе в ваттах (Вт или VA) или киловаттах (кВт или кVA). 1 кВт=1000 Вт.
Таблица потребляемой мощности и силы тока бытовыми электроприборами | |||
Бытовой электроприбор | Потребляемая мощность, кВт (кBA) | Потребляемая сила тока, А | Режим потребления тока |
Лампочка накаливания | 0,06 – 0,25 | 0,3 – 1,2 | Постоянно |
Электрочайник | 1,0 – 2,0 | 5 – 9 | До 5 минут |
Электроплита | 1,0 – 6,0 | 5 – 60 | Зависит от режима работы |
Микроволновая печь | 1,5 – 2,2 | 7 – 10 | Периодически |
Электромясорубка | 1,5 – 2,2 | 7 – 10 | Зависит от режима работы |
Тостер | 0,5 – 1,5 | 2 – 7 | Постоянно |
Гриль | 1,2 – 2,0 | 7 – 9 | Постоянно |
Кофемолка | 0,5 – 1,5 | 2 – 8 | Зависит от режима работы |
Кофеварка | 0,5 – 1,5 | 2 – 8 | Постоянно |
Электродуховка | 1,0 – 2,0 | 5 – 9 | Зависит от режима работы |
Посудомоечная машина | 1,0 – 2,0 | 5 – 9 | Максимальный с момента включения до нагрева воды |
Стиральная машина | 1,2 – 2,0 | 6 – 9 | Максимальный с момента включения до нагрева воды |
Сушильная машина | 2,0 – 3,0 | 9 – 13 | Постоянно |
Утюг | 1,2 – 2,0 | 6 – 9 | Периодически |
Пылесос | 0,8 – 2,0 | 4 – 9 | Зависит от режима работы |
Обогреватель | 0,5 – 3,0 | 2 – 13 | Зависит от режима работы |
Фен для волос | 0,5 – 1,5 | 2 – 8 | Зависит от режима работы |
Кондиционер | 1,0 – 3,0 | 5 – 13 | Зависит от режима работы |
Стационарный компьютер | 0,3 – 0,8 | 1 – 3 | Зависит от режима работы |
Электроинструмент (дрель, лобзик и т. п.) | 0,5 – 2,5 | 2 – 13 | Зависит от режима работы |
Ток потребляют еще холодильник, осветительные приборы, радиотелефон, зарядные устройства, телевизор в дежурном состоянии. Но в сумме эта мощность составляет не более 100 Вт и при расчетах ее можно не учитывать.
Если Вы включите все имеющиеся в доме электроприборы одновременно, то необходимо будет выбрать сечение провода, способное пропустить ток 160 А. Провод понадобится толщиной в палец! Но такой случай маловероятен. Трудно представить, что кто-то способен одновременно молоть мясо, гладить утюгом, пылесосить и сушить волосы.
Пример расчета. Вы встали утром, включили электрочайник, микроволновую печь, тостер и кофеварку. Потребляемый ток соответственно составит 7 А + 8 А + 3 А + 4 А = 22 А. С учетом включенного освещения, холодильника и в дополнение, например, телевизора, потребляемый ток может достигнуть 25 А.
Выбор сечения медного провода по мощности для сети 220 В
Выбрать сечение провода можно не только по силе тока но и по величине потребляемой мощности. Для этого нужно составить перечень всех планируемых для подключения к данному участку электропроводки электроприборов, определить, какую мощность потребляет каждый из них по отдельности. Далее сложить полученные данные и воспользоваться нижеприведенной таблицей.
Таблица выбора сечения и диаметра медного провода по мощности для сети 220 В | |||||||||||||||||
Мощность электроприбора, кВт (кBA) | 0,1 | 0,3 | 0,5 | 0,7 | 0,9 | 1,0 | 1,2 | 1,5 | 1,8 | 2,0 | 2,5 | 3,0 | 3,5 | 4,0 | 4,5 | 5,0 | 6,0 |
Стандартное сечение, мм2 | 0,35 | 0,35 | 0,35 | 0,5 | 0,75 | 0,75 | 1,0 | 1,2 | 1,5 | 1,5 | 2,0 | 2,5 | 2,5 | 3,0 | 4,0 | 4,0 | 5,0 |
Диаметр, мм | 0,67 | 0,67 | 0,67 | 0,5 | 0,98 | 0,98 | 1,13 | 1,24 | 1,38 | 1,38 | 1,6 | 1,78 | 1,78 | 1,95 | 2,26 | 2,26 | 2,52 |
Если имеется несколько электроприборов и для некоторых известен ток потребления, а для других мощность, то нужно определить из таблиц сечение провода для каждого из них, а затем полученные результаты сложить.
Выбор сечения медного провода по мощности для с бортовой сети автомобиля 12 В
Если при подключении к бортовой сети автомобиля дополнительного оборудования известна только его мощность потребления, то определить сечение дополнительной электропроводки можно с помощью ниже приведенной таблицы.
Таблица выбора сечения и диаметра медного провода по мощности для бортовой сети автомобиля 12 В | ||||||||||||||||
Мощность электроприбора, ватт (BA) | 10 | 30 | 50 | 80 | 100 | 200 | 300 | 400 | 500 | 600 | 700 | 800 | 900 | 1000 | 1100 | 1200 |
Стандартное сечение, мм2 | 0,35 | 0,5 | 0,75 | 1,2 | 1,5 | 3,0 | 4,0 | 6,0 | 8,0 | 8,0 | 10 | 10 | 10 | 16 | 16 | 16 |
Диаметр, мм | 0,67 | 0,5 | 0,8 | 1,24 | 1,38 | 1,95 | 2,26 | 2,76 | 3,19 | 3,19 | 3,57 | 3,57 | 3,57 | 4,51 | 4,51 | 4,51 |
Выбор сечения провода для подключения электроприборов к трехфазной сети 380 В
При работе электроприборов, например, электродвигателя, подключенных к трехфазной сети, потребляемый ток протекает уже не по двум проводам, а по трем и, следовательно, величина протекающего тока в каждом отдельном проводе несколько меньше. Это позволяет использовать для подключения электроприборов к трехфазной сети провод меньшего сечения.
Для подключения электроприборов к трехфазной сети напряжением 380 В, например электродвигателя, сечение провода для каждой фазы берется в 1,75 раза меньше, чем для подключения к однофазной сети 220 В.
Внимание
, при выборе сечения провода для подключения электродвигателя по мощности следует учесть, что на шильдике электродвигателя указывается максимальная механическая мощность, которую двигатель может создать на валу, а не потребляемая электрическая мощность. Потребляемая электрическая мощность электродвигателем с, учетом КПД и сos φ приблизительно в два раза больше, чем создаваемая на валу, что необходимо учитывать при выборе сечения провода исходя из мощности двигателя, указанной в табличке.
Например, нужно подключить электродвигатель потребляющий мощность от сети 2,0 кВт. Суммарный ток потребления электродвигателем такой мощности по трем фазам составляет 5,2 А. По таблице получается, что нужен провод сечением 1,0 мм2, с учетом вышеизложенного 1,0 / 1,75 = 0,5 мм2. Следовательно, для подключения электродвигателя мощностью 2,0 кВт к трехфазной сети 380 В понадобится медный трехжильный кабель с сечением каждой жилы 0,5 мм2.
Гораздо проще выбрать сечение провода для подключения трехфазного двигателя, исходя из величины тока его потребления, который всегда указывается на шильдике. Например, в шильдике приведенном на фотографии, ток потребления двигателя мощностью 0,25 кВт по каждой фазе при напряжении питания 220 В (обмотки двигателя подключены по схеме «треугольник») составляет 1,2 А, а при напряжении 380 В (обмотки двигателя подключены по схеме «звезда») всего 0,7 А. Взяв силу тока, указанную на шильдике, по таблице для выбора сечения провода для квартирной электропроводки выбираем провод сечением 0,35 мм2 при подключении обмоток электродвигателя по схеме «треугольник» или 0,15 мм2 при подключении по схеме «звезда».
Как рассчитать трехфазную проводку?
На расчет допустимого сечения кабеля влияет тип сети. Если мощность потребления одинакова, допустимые токовые нагрузки на жилы кабеля для трехфазной сети будут меньше, чем для однофазной.
Для питания трехжильного кабеля при U = 380 В применяется формула:
I = P/(√3∙U∙cos φ).
Коэффициент мощности можно найти в характеристиках электроприборов или он равен 1, если нагрузка активная. Максимально допустимый ток для медных проводов, а также алюминиевых при трехфазном напряжении указывается в таблицах.
О выборе марки кабеля для домашней электропроводки
Делать квартирную электропроводку из алюминиевых проводов на первый взгляд кажется дешевле, но эксплуатационные расходы из-за низкой надежности контактов со временем многократно превысят затраты на электропроводку из меди. Рекомендую делать проводку исключительно из медных проводов! Алюминиевые провода незаменимы при прокладке воздушной электропроводки, так как они легкие и дешевые и при правильном соединении служат надежно продолжительное время.
А какой провод лучше использовать при монтаже электропроводки, одножильный или многожильный? С точки зрения способности проводить ток на единицу сечения и монтажа, одножильный лучше. Так что для домашней электропроводки нужно использовать только одножильный провод. Многожильный допускает многократные изгибы, и чем тоньше в нем проводники, тем он более гибкий и долговечнее. Поэтому многожильный провод применяют для подключения к электросети нестационарных электроприборов, таких как электрофен, электробритва, электроутюг и все остальных.
После принятия решения по сечению провода встает вопрос о марке кабеля для электропроводки. Тут выбор не велик и представлен всего несколькими марками кабелей: ПУНП, ВВГнг и NYM.
Кабель ПУНП с 1990 года, в соответствии с решением Главгосэнергонадзора «О запрете применения проводов типа АПВН, ППБН, ПЕН, ПУНП и др., выпускаемых по ТУ 16-505. 610-74 вместо проводов АПВ, АППВ, ПВ и ППВ по ГОСТ 6323-79*» к применению запрещен.
Кабель ВВГ и ВВГнг – медные провода в двойной поливинилхлоридной изоляции, плоской формы. Предназначен для работы при температуре окружающей среды от −50°С до +50°С, для выполнения проводки внутри зданий, на открытом воздухе, в земле при прокладке в тубах. Срок службы до 30 лет. Буквы «нг» в обозначении марки говорят о негорючести изоляции провода. Выпускаются двух-, трех- и четырехжильные с сечением жил от 1,5 до 35,0 мм2. Если в обозначении кабеля перед ВВГ стоит буква А (АВВГ), то жилы в проводе алюминиевые.
Кабель NYM (его российский аналог – кабель ВВГ), с медными жилами, круглой формы, с негорючей изоляцией, соответствует немецкому стандарту VDE 0250. Технические характеристики и область применения, практически одинаковые с кабелем ВВГ. Выпускаются двух-, трех- и четырехжильные с сечением жил от 1,5 до 4,0 мм2.
Как видите, выбор для прокладки электропроводки не велик и определяется в зависимости от того, какой формы кабель более подходит для монтажа, круглой или плоской. Кабель круглой формы удобнее прокладывается через стены, особенно если делается ввод с улицы в помещение. Понадобится просверлить отверстие чуть больше диаметра кабеля, а при большей толщине стены это становится актуальным. Для внутренней проводки удобнее применять плоский кабель ВВГ.
При прокладке квартирной электропроводки, как правило, возникает вопрос и о выборе автоматического выключателя, или, как его часто называют, автомата. Этот вопрос и о выборе счетчика, УЗО, дифференциального автомата подробно освещен в статье сайта «Об электрическом счетчике, УЗО и автоматах защиты».
Рассеивание тепла при работе кабеля
Проводник не может разогреваться от проходящего тока бесконечно долго. Одновременно он отдает тепло окружающей среде, количество которого зависит от разности температуры между ними. В определенный момент наступает равновесное состояние и температура проводника устанавливается постоянной.
Важно! При правильно подобранной проводке потери на нагрев снижаются. Следует помнить, что за нерациональный расход электроэнергии (когда провода перегреваются) также приходится платить. С одной стороны плата взимается за лишний расход по счетчику, а с другой — за замену кабеля.
Параллельное соединение проводов электропроводки
Бывают безвыходные ситуации, когда срочно нужно проложить проводку, а провода требуемого сечения в наличии нет. В таком случае, если есть провод меньшего, чем необходимо, сечения, то можно проводку сделать из двух и более проводов, соединив их параллельно. Главное, чтобы сумма сечений каждого из них была не меньше расчетной.
Например, есть три провода сечением 2, 3 и 5 мм2, а нужен по расчетам 10 мм2. Соединяете их все параллельно, и проводка будет выдерживать ток до 50 ампер. Да Вы и сами многократно видели параллельное соединение большего количества тонких проводников для передачи больших токов. Например, для сварки используется ток до 150 А и для того, чтобы сварщик мог управлять электродом, нужен гибкий провод. Его и делают из сотен параллельно соединенных тонких медных проволочек. В автомобиле аккумулятор к бортовой сети тоже подключают с помощью такого же гибкого многожильного провода, так как во время пуска двигателя стартер потребляет от аккумулятора ток до 100 А. А при установке и снятии аккумулятора необходимо провода отводить в сторону, то есть провод должен быть достаточно гибким.
Способ увеличения сечения электропровода путем параллельного соединения нескольких проводов разного диаметра можно использовать только в крайнем случае. При прокладке домашней электропроводки допустимо соединять параллельно только провода одинакового сечения, взятые из одной бухты.
Онлайн калькуляторы для вычисления сечения и диаметра провода
Онлайн калькулятор для вычисления сечения провода по диаметру | |
Введите диаметр провода, мм: |
С помощью онлайн калькулятора, представленного ниже можно решить обратную задачу – определить по сечению диаметр проводника.
Онлайн калькулятор для расчета диаметра провода кабеля по сечению | |
Введите величину сечения провода, мм2: |
Таблица выбора сечения кабеля в зависимости от силы тока или мощности при прокладке проводов. Выбор сечения автомобильного провода — Ізолітсервіс
Таблица выбора сечения кабеля при прокладке проводов
Проложенные открыто |
Проложенные в трубе |
|||||||||||
Сечение |
Медь |
Алюминий |
Медь |
Алюминий |
||||||||
каб. , |
ток |
W, кВт |
ток |
W, кВт |
ток |
W, кВт |
|
W, кВт |
||||
мм2 |
А |
220в |
380в |
А |
220в |
380в |
А |
220в |
380в |
А |
220в |
380в |
0,5 |
11 |
2,4 |
— |
— |
— |
— |
— |
— |
— |
— |
— |
— |
0,75 |
15 |
3,3 |
— |
— |
— |
— |
— |
— |
— |
— |
— |
— |
1,0 |
17 |
3,7 |
6,4 |
— |
— |
— |
14 |
3,0 |
5,3 |
— |
— |
— |
1,5 |
23 |
5,0 |
8,7 |
— |
— |
— |
15 |
3,3 |
5,7 |
— |
— |
— |
2,0 |
26 |
5,7 |
9,8 |
21 |
4,6 |
7,9 |
19 |
4,1 |
7,2 |
14,0 |
3,0 |
5,3 |
2,5 |
30 |
6,6 |
11,0 |
24 |
5,2 |
9,1 |
21 |
4,6 |
7,9 |
16,0 |
3,5 |
6,0 |
4,0 |
41 |
9,0 |
15,0 |
32 |
7,0 |
12,0 |
27 |
5,9 |
10,0 |
21,0 |
4,6 |
7,9 |
6,0 |
50 |
11,0 |
19,0 |
39 |
8,5 |
14,0 |
34 |
7,4 |
12,0 |
26,0 |
5,7 |
9,8 |
10,0 |
80 |
17,0 |
30,0 |
60 |
13,0 |
22,0 |
50 |
11,0 |
19,0 |
38,0 |
8,3 |
14,0 |
16,0 |
100 |
22,0 |
38,0 |
75 |
16,0 |
28,0 |
80 |
17,0 |
30,0 |
55,0 |
12,0 |
20,0 |
25,0 |
140 |
30,0 |
53,0 |
105 |
23,0 |
39,0 |
100 |
22,0 |
38,0 |
65,0 |
14,0 |
24,0 |
35,0 |
170 |
37,0 |
64,0 |
130 |
28,0 |
49,0 |
135 |
29,0 |
51,0 |
75,0 |
16,0 |
28,0 |
Выбор сечения автомобильного провода:
Номин. сечение, мм2 |
Сила тока в одиночном проводе, А при длительной нагрузке и при температуре окружающей среды, оС |
|||
20 |
30 |
50 |
80 |
|
0,5 |
17,5 |
16,5 |
14,0 |
9,5 |
0,75 |
22,5 |
21,5 |
17,5 |
12,5 |
1,0 |
26,5 |
25,0 |
21,5 |
15,0 |
1,5 |
33,5 |
32,0 |
27,0 |
19,0 |
2,5 |
45,5 |
43,5 |
37,5 |
26,0 |
4,0 |
61,5 |
58,5 |
50,0 |
35,5 |
6,0 |
80,5 |
77,0 |
66,0 |
47,0 |
16,0 |
149,0 |
142,5 |
122,0 |
88,5 |
*Примечание: при прокладке проводов сечением 0,5 — 4,0 мм2 в жгутах, в поперечном сечении которых по трассе содержится от двух до семи проводов, сила допустимого тока в проводе составляет 0,55 от силы тока в одиночном проводе согласно таблице, а при наличии 8-19 проводов — 0,38 от силы тока в одиночном проводе.
1, 1,5, 2,5, 4, 6 квадратные провода
Сколько 1, 1,5, 2,5, 4, 6 квадратных проводов могут нагрузить кВт?При покупке электрических проводов многие будут задавать вопрос о нагрузке проводов с разной площадью сечения. Есть 1 квадратный провод, 1,5 квадратных провода, 2,5 квадратных провода, 4 квадратных провода, 6 квадратных проводов и так далее. Ниже приводится краткое описание того, сколько ватт можно нагрузить этими проводами.
1 квадратная линия: сечение 1 квадратный миллиметр провода
Если исходить из формулы: площадь = 2*3.14 радиуса
Таким образом, 1 квадратная линия составляет около =1,13 мм
Сколько ватт может нагрузить один или 1 квадратный провод?
Электрик обычно использует «формулу»: до тех пор, пока медный провод, площадь поперечного сечения на квадратный миллиметр может безопасно проходить через номинальный ток 4—5A; 220В в однофазной цепи, мощность на 1кВт, ток около 4,5А; в трехфазной симметричной цепи 380В, мощность на 1кВт, ток около 2А. Приведенные выше значения могут быть очень близки к значениям, рассчитанным по формуле физического расчета.Поэтому, чтобы избежать этих «нудных» формул, мы должны помнить об этом.
Тогда по этому алгоритму мы знаем: медный провод на 1 квадратный миллиметр площади, если 220В используется в однофазной цепи, он может безопасно нести ток нагрузки через 1кВт; при использовании в цепи трехфазной сбалансированной нагрузки (например, двигателя) может обеспечить допустимую токовую нагрузку на 2,5 кВт.
Сколько ватт могут нагрузить два и 1,5 квадратных провода?
Если линия электропередач представляет собой линию из медного провода, максимально допустимый рабочий ток составляет 20А или 4400 Вт; два — скрытый стальной рукав, ток 16А, мощность 3520 Вт; тройка скрытая из ПВХ, ток 14А, мощность 3000 Вт.
Сколько ватт могут нагрузить три и 2,5 квадратных провода?
2,5 квадратный провод Чэн, сколько киловатт электричества, положения национального стандарта GB4706. 1-1992/1998 значение тока нагрузки провода, медный провод 2,5 мм 16A 25A до около 5500 Вт, алюминиевый провод 2,5 мм 13A ~ 20A около 4400 Вт 220 В переменного тока длительное время напряжение не превышает 10 А, стандартное большинство времени не более 15 А является безопасным.
сколько ватт может потреблять кабель 2,5 мм?
1 квадратная линия = 8А, 8А × 2,5 квадрат = 20 ампер, по формуле: P = U × I, 220В × 20А = 4,4кВт
Следовательно, провод БВ 2,5 кв.м можно использовать с максимальной мощностью 4,4 КВт.
Сколько ватт могут нагрузить четыре и четыре квадратных провода?
Однофазный блок питания мощностью 1 кВт составляет около 4,5 А, а 8 кВт составляет около 36 А. 4 квадратных провода (одиночный пластиковый провод) пропускная способность составляет около 30А, некоторые маленькие, 6 квадратных линий (одиночная мощность). Вы должны изменить стол и ворота. Не используйте такой большой блок питания, самый маленький 4 кВт также может.4 квадратных провода Cheng на сколько киловатт мощности, что зависит от вашей домашней мощности 220В или фабрики 380В, если 4 квадратных провода 220 могут загрузить от 6 до 8 кВт.
Сколько ватт может нагрузить 5 и 6 квадратных проводов?
6 квадратный провод не может быть напрямую связан с количеством киловатт линии электропередачи и мощностью передачи. В общем, 6 квадратных траверс более чем достаточно для кондиционера. В электроснабжении на строительной площадке обычно используется кабель 10×6+1×4. Что касается выдерживаемой силы тока, то этот кабель вообще управляется воздушным выключателем на 63А, по моему опыту в строительстве.6 квадратных алюминиевых проводов могут нагружать 6 кВт, 6 квадратных медных проводов — 10 кВт.
Как первоклассное предприятие по производству кабельных проводов и кабелей в Китае SANHENG, в основном производство силовых кабелей, кабелей управления, кабелей с изоляцией из ПВХ, строительных проводов, кабелей с изоляцией из ПВХ и оболочек, резиновых кабелей, воздушных кабелей, оголенных проводников 8 серии может быть разделена на более чем 50 разновидностей, подразделенных на 1000 спецификаций.
Вся продукция сертифицирована обязательной сертификацией Китая, сертификацией BV, сертификацией SONCAP Нигерии, лицензией на производство промышленной продукции в Китае и другими национальными сертификатами.У нас также есть возможность производить продукцию, соответствующую международным стандартам, таким как IEC, CE, RoHS и так далее.
Компания Henan Sanheng Cable Co., Ltd, основанная в 2000 году, уже почти 20 лет является одним из ведущих производителей проводов и кабелей в кабельно-проводниковой промышленности Китая. компания имеет более 5 производственных линий .
Производственный кабель можно разделить на более чем 50 разновидностей и подразделить на 1000 спецификаций. Все продукты прошли национальную сертификацию, такую как обязательная сертификация Китая, сертификация bv, нигерийский сертификат SONCAP, национальная промышленная сертификация Китая и т. д. Китайская национальная лицензия на промышленное производство и т. д. Он также имеет возможность производить продукцию, соответствующую международным стандартам, таким как IEC, CE, ROHS и т. д.
Если вы хотите купить провода и кабели, вы можете обратиться в службу поддержки клиентов и мы свяжемся с вами как можно скорее.
- Алюминиевый кабель с изоляцией из ПВХ
Проводник: алюминиевый проводник класса 1/2 (твердый)
Изоляция: поливинилхлоридный компаунд
Цвет изоляции: красный, синий, зеленый, желтый, коричневый, черный, серый, белый, розовый, оранжевый, желто-зеленый
- Гибкий плоский кабель
Проводник: Многожильный медный провод класса 5/6 (гибкий)
Изоляция: поливинилхлоридный компаунд
Цвет изоляции: красный, синий, желтый/зеленый или по запросу
- Одножильный гибкий кабель
Проводник: Многожильный медный провод класса 5 (гибкий)
Изоляция: поливинилхлоридный компаунд
Цвет проводника: красный, синий, зеленый, желтый, коричневый, черный, серый, белый, розовый, оранжевый, желто-зеленый
- Двойной и заземляющий кабель
Проводник: медный провод класса 1/2 (одножильный)
Изоляция: поливинилхлоридный компаунд
Цвет изоляции: красный, синий, желтый/зеленый или по запросу
Американский калибр проволоки против.
Круговой милсАмериканский калибр проводов (AWG) — это стандарт США для размеров проводников. Калибр связан с диаметром проволоки.
Стандарт AWG включает медь, алюминий и другие материалы для проводов. Типичная бытовая медная проводка имеет номер AWG 12 или 14. Телефонный провод обычно имеет номер 22, 24 или 26. Чем выше номер калибра, тем меньше диаметр и тоньше провод.
Круговой мил — CM — единица площади, используемая специально для обозначения размера поперечного сечения провода или кабеля.
Американский калибр (AWG) (AWG) | диаметр (MILS) (10 -3 в) | площадь (круговые милсы) (см) (MIL 2 ) | площадь | (мм 2 ) | диаметр (мм) | |
---|---|---|---|---|---|---|
0000 (4/0) | 460 | 21172 | 107 | 11. 7 | ||
000 (3/0) | 410 | 167800 | 85.0 | 10.4 | 10.4 | |
00 (2/0) | 365 | 133072 | 133072 | 9.27 | 9.27 | |
0 (1/0) | 325 | 105531 | 53531 | 53.59 | 8.25 | |
1 289 | 83690 | 42,4 7,35 | ||||
2 258 | 66369 | 33,6 6,54 | ||||
3 229 | 52633 | 26.7 | 5,83 | |||
4 | 204 | 41740 | 21,2 | 5,19 | ||
5 | 182 | 33101 | 16,8 | 4,62 | ||
6 | 162 | 26251 | 13.3 | 4.12 | 4.12 | |
7 | 144 | 20818 | 20818 | 10.5 | 3. 67 | |
8 | 128 | 16509 | 8.37 | 3,26 | ||
9 | 114 | 13092 | 6,63 | 2,91 | ||
10 | 102 | 10383 | 5,26 | 2,59 | ||
11 | 90,7 | 8234 | 4.17 | 2.31 | 2.31 | |
12 | 80,8 | 6530 | 6530 | 3.31 | 2.05 | |
13 | 72,0 | 578 | 2.62 | 1,83 | ||
14 | 64,1 | 4107 | 2,08 | 1,63 | ||
15 | 57,1 | 3257 | 1,65 | 1,45 | ||
16 | 50,8 | 2583 | 1.31 | 1.29 | 1.29 | |
17 | 49 | 2048 | 1,04 | 1.04 | 1.15 | |
18 | 40. 3 | 1624 | 0.823 | 1,02 | ||
20 | 32,0 | +1022 | 0,518 | 0,812 | ||
21 | 28,5 | 810 | 0,410 | 0,723 | ||
22 | 25,3 | 642 | 0.326 | 0.644 | ||
23 | 23 | 22.6 | 510 | 0.258 | 0.258 | 0.573 |
24 | 20.1 | 404 | 404 | 0.511 | 0.511 | |
25 | 17.9 | 17.9 | 320 | 0.162 | 0,455 |
Скачать и распечатать AWG — круговые миллы и мм 2 Chart
AWG Дюйма
диаметр в дюймах может быть рассчитан из AWG как
D в = 0,005 92 (36 — N) / 39 (1)
где
D в = диаметр (дюймы)
n = толщина
AWG в мм
127 92 (36 — N) / 39 (1b)
, где
D мм = Диаметр (мм)
N = Датчик
AWG до дюйма и мм калькулятор
# калибр
Таблица размеров проводов для систем постоянного тока 12 В, 24 В и 48 В
Удобный инструмент для измерения размеров проводов и кабелей для 12-, 24- и 48-вольтовых систем.
Провод надлежащего сечения может иметь значение между недостаточной и полной зарядкой аккумуляторной системы, между тусклым и ярким светом, а также между слабой и полной работой инструментов и приборов.Разработчики силовых цепей низкого напряжения часто не знают о последствиях падения напряжения и размера провода.
В обычных домашних электрических системах (120/240 В переменного тока) размер проводов определяется в первую очередь безопасной допустимой нагрузкой по силе тока (току). Первоочередная задача – пожарная безопасность. В системах низкого напряжения (12, 24, 48 В пост. тока) основной проблемой являются потери мощности. Размер провода не должен определяться только по допустимой токовой нагрузке, потому что существует меньший допуск по падению напряжения (за исключением очень коротких участков). Например, падение на 1 В от 12 В вызывает в 10 раз большую потерю мощности, чем падение на 1 В от 120 В.
Используйте следующую таблицу в качестве основного инструмента при решении проблем с сечением проводов. Он заменяет многие страницы старых таблиц размеров. Вы можете применить его к любому рабочему напряжению, при любом падении напряжения в процентах.
Таблица размеров универсальной проволоки
Эта таблица работает для любого напряжения или падения напряжения, американского (AWG) или метрического (мм2) размера. Он применяется к типичным цепям постоянного тока и к некоторым простым цепям переменного тока (однофазный переменный ток с резистивными нагрузками, а не двигательными нагрузками, коэффициент мощности = 1,0, реактивное сопротивление линии пренебрежимо мало).
Шаг 1 – Рассчитайте следующее:
VDI = (AMPS x FEET)/(%ПАДЕНИЕ НАПРЯЖЕНИЯ x НАПРЯЖЕНИЕ) |
VDI = индекс падения напряжения (справочное число, основанное на сопротивлении провода) FEET = длина односторонней проводки (1 метр = 3,28 фута) % VOLT DROP = ваш выбор допустимого падения напряжения (пример: используйте 3 для 3%) |
Шаг 2 – Определите подходящий размер провода из приведенной ниже таблицы. Сравните рассчитанный VDI с VDI в таблице, чтобы определить ближайший размер провода. Номинальная сила тока сечения провода должна составлять не менее 125 % непрерывного тока, проходящего через него.
Диаметр провода | Площадь мм 2 | Медь | Алюминий | ||
AWG | VDI | Мощность | VDI | Мощность | |
16 | 1.31 | 1 | 10 | Не рекомендуется | |
14 | 2,08 | 2 | 15 | ||
12 | 3,31 | 3 | 20 | ||
10 | 5,26 | 5 | 30 | ||
8 | 8,37 | 8 | 55 | ||
6 | 13,3 | 12 | 75 | ||
4 | 21. 1 | 20 | 95 | ||
2 | 33,6 | 31 | 130 | 20 | 100 |
0 | 53,5 | 49 | 170 | 31 | 132 |
00 | 67,4 | 62 | 195 | 39 | 150 |
000 | 85,0 | 78 | 225 | 49 | 175 |
0000 | 107 | 99 | 260 | 62 | 205 |
Метрический размер по площади поперечного сечения | Медь (VDI x 1.1 = мм 2 ) | Алюминий (VDI x 1,7 = мм 2 ) |
Доступные размеры: 1 1,5 2,5 4 6 10 16 25 35 50 70 95 120 мм 2 |
ПРИМЕР: Нагрузка 20 А при 24 В на расстоянии 100 футов с максимальным падением напряжения 3% | |
VDI = (20×100)/(3×24) = 27,78 | Для медного провода ближайший VDI = 31. Указывает на провод №2 AWG или 35 мм 2 |
ПРИМЕЧАНИЯ: AWG = американский калибр проводов.Допустимая нагрузка указана в соответствии с Национальными электротехническими нормами и правилами (США) для температуры окружающего воздуха 30°C (85°F) для не более трех изолированных проводников в кабелепроводе на открытом воздухе для кабелей типов AC, NM, NMC и SE; и изоляции проводников TA, TBS, SA, AVB, SIS, RHH, THHN и XHHW. Для других условий обратитесь к Национальному электрическому кодексу или инженерному справочнику.
Определение допустимого падения напряжения для различных электрических нагрузокОбщее правило заключается в том, чтобы сечение провода соответствовало падению напряжения примерно на 2-3% при типичной нагрузке.Когда это окажется очень дорогим, примите во внимание некоторые из следующих советов. Различные электрические цепи имеют разные допуски на падение напряжения.
ЦЕПИ ОСВЕЩЕНИЯ, ЛАМПЫ НАКАЛИВАНИЯ И КВАРЦЕВЫЕ ГАЛОГЕННЫЕ (QH) : Не обманывайте их! Падение напряжения на 5 % приводит к снижению светоотдачи примерно на 10 %. Это связано с тем, что лампочка не только получает меньше энергии, но и более холодная нить накаливания переходит от раскаленной докрасна, излучая гораздо меньше видимого света.
ЦЕПИ ОСВЕЩЕНИЯ, ФЛУОРЕСЦЕНТНЫЕ : Падение напряжения вызывает почти пропорциональное падение светоотдачи.Флуоресцентные лампы используют от 1/2 до 1/3 тока ламп накаливания или ламп QH для той же светоотдачи, поэтому они могут использовать провод меньшего размера. Мы выступаем за использование качественных люминесцентных ламп. Жужжание, мерцание и плохая цветопередача устранены в большинстве современных компактных люминесцентных ламп, электронных балластов и ламп теплого или полного спектра.
ДВИГАТЕЛИ ПОСТОЯННОГО ТОКА могут использоваться в системах возобновляемой энергии, особенно для водяных насосов. Они работают на 10-50% более эффективно, чем двигатели переменного тока, и исключают затраты и потери, связанные с инверторами.Двигатели постоянного тока НЕ требуют чрезмерных скачков мощности при запуске, в отличие от асинхронных двигателей переменного тока. Падение напряжения во время пускового скачка просто приводит к «мягкому пуску».
ИНДУКЦИОННЫЕ ДВИГАТЕЛИ ПЕРЕМЕННОГО ТОКА обычно используются в крупных электроинструментах, приборах и скважинных насосах. Они предъявляют очень высокие требования к помпажу при запуске. Значительное падение напряжения в этих цепях может привести к невозможности запуска и возможному повреждению двигателя. Следуйте Национальному электротехническому кодексу. В случае скважинного насоса следуйте инструкциям производителя.
PV-DIRECT SOLAR WATER PUMP Размеры цепей должны быть рассчитаны не на номинальное напряжение (т.е. 24 В), а на фактическое рабочее напряжение (в этом случае приблизительно 34 В). Без батареи, поддерживающей низкое напряжение, рабочее напряжение будет примерно равно пиковому напряжению в точке питания фотоэлектрической батареи.
ЦЕПИ ЗАРЯДА АККУМУЛЯТОРНЫХ АККУМУЛЯТОРОВ являются критически важными, поскольку падение напряжения может привести к непропорциональной потере зарядного тока. Чтобы зарядить аккумулятор, генерирующее устройство должно подавать более высокое напряжение, чем уже имеется в аккумуляторе.Вот почему большинство фотоэлектрических модулей рассчитаны на пиковую мощность 16-18 В. Падение напряжения более чем на 5% уменьшит эту необходимую разницу напряжений и может уменьшить зарядный ток батареи на гораздо больший процент. Наша общая рекомендация здесь заключается в расчете падения напряжения на 2-3%. Если вы считаете, что фотоэлектрическая батарея может быть расширена в будущем, выберите размер провода для будущего расширения. Ваш клиент оценит это, когда придет время пополнить ассортимент.
ЦЕПИ ВЕТРОГЕНЕРАТОРА : В большинстве мест ветрогенератор вырабатывает свой полный номинальный ток только во время случайных ураганов или порывов ветра.Если размер провода с низкими потерями большой и очень дорогой, вы можете рассмотреть возможность выбора размера для падения напряжения до 10% при номинальном токе. Эта потеря будет происходить только изредка, когда энергии больше всего. Обратитесь к руководству по эксплуатации ветровой системы.
Дополнительные методы снижения затратАЛЮМИНИЕВАЯ ПРОВОДА может быть более экономичной, чем медь, для некоторых магистральных линий. Энергетические компании используют его, потому что он дешевле меди и легче по весу, хотя необходимо использовать больший размер.Это безопасно при установке для кодирования клемм с рейтингом AL. Возможно, вы захотите рассмотреть его для длинных и дорогих тиражей № 2 или больше. Разница в стоимости колеблется в зависимости от рынка металлов. Он жесткий, его трудно согнуть, и он не предназначен для погружных насосов.
МОДУЛИ ВЫСОКОГО НАПРЯЖЕНИЯ : Рассмотрите возможность использования модулей более высокого напряжения (пиковая мощность 18+ вольт, такие как наши BP-585 и BP-590) для компенсации чрезмерного падения напряжения. В некоторых случаях при больших расстояниях повышенная стоимость модуля может быть ниже стоимости более крупного провода.
ОТСЛЕЖИВАНИЕ СОЛНЕЧНОЙ ЭНЕРГИИ : Используйте солнечный трекер (от Zomeworks), чтобы можно было использовать меньший массив, особенно в условиях интенсивного летнего использования (отслеживание получает наибольшую энергию летом, когда солнце движется по небу по самой длинной дуге). Меньший фотоэлектрический массив потребует меньшего провода.
НАСОСЫ ДЛЯ ВОДЯНЫХ СКВАЖИН : Рассмотрим маломощную систему с медленным откачиванием и резервуаром для хранения воды. Это позволяет уменьшить размеры проводов и труб при длительных подъемах или прогонах.В системе с прямой накачкой фотоэлектрической системы можно обойтись без длинного провода, используя отдельную фотоэлектрическую батарею, расположенную рядом с насосом. Погружной насос SunRise, насос Solar Slowpump, бустерный насос Flowlight и поршневой насос Solar Force — это высокоэффективные насосы постоянного тока, работающие при напряжении до 48 В. Мы также производим версии и преобразователи переменного тока, позволяющие использовать переменный ток, передаваемый на большие расстояния. Эти насосы потребляют меньший рабочий ток и гораздо меньший пусковой ток, чем обычные насосы переменного тока, что значительно снижает требования к сечению проводов.
Потери в меди – обзор
8.3.3.1 Обзор существующих методов
Желателен отдельный онлайн-мониторинг потерь в железном сердечнике и меди однофазных и трехфазных трансформаторов, поскольку возникают дополнительные потери из-за проблем с качеством электроэнергии (например, гармоники, возбуждение постоянным током) могут быть легко обнаружены до того, как возникнут какие-либо значительные повреждения из-за дополнительного повышения температуры. Эти потери можно точно и экономично измерить для однофазных трансформаторов с помощью автоматизированного тестирования (CAT) [71,88].
Известные подходы к измерению потерь в режиме реального времени в высокоэффективных трансформаторах (например, с КПД более 97%) неточны, поскольку они измеряют входную и выходную мощности и определяют потери по разнице этих двух больших величин. Обычно используемый косвенный метод, состоящий из испытаний на холостом ходу (потери в железном сердечнике) и испытания на короткое замыкание (потери в меди) [35], не может быть выполнен в режиме онлайн, когда трансформатор частично или полностью нагружен. То же самое справедливо и для метода обратной загрузки [89].
Арри и др. представил аналоговую измерительную схему [90]. Хорошо известно, что на стороне заземления Y трехфазного трансформатора могут возникать токи нулевой последовательности, и эти токи вызывают соответствующие потери в трансформаторе. Измерительная схема, представленная Arri et al. не может измерять эти компоненты нулевой последовательности, поэтому этот метод не подходит для трансформаторов с заземлением с любой стороны (как первичной, так и вторичной). Более того, Arri et al. полагаются на множество измерительных трансформаторов (девять трансформаторов тока и девять трансформаторов напряжения) для преобразования соединения Δ в соединение Y для трансформатора Y / Δ: в результате снижается точность измерения. В [91] аналоговая измерительная схема с ваттметрами представлена в однофазной цепи.
В этом разделе представлен более точный метод реального времени для цифрового и раздельного измерения стационарных потерь в железном сердечнике и меди трехфазных трансформаторов с различными заземленными соединениями, когда трансформаторы работают при любых условиях нагрузки.Эта цифровая измерительная схема основана на датчиках напряжения и тока (делители напряжения, шунты, ТТ, ТТ или устройства Холла), аналого-цифровом преобразователе и персональном компьютере. С помощью программы автоматизированного тестирования (CATEA) [70] потери, КПД, гармоники, снижение номинальных характеристик и форму волны всех напряжений и токов можно отслеживать за доли секунды.
Максимальные погрешности измерения потерь допустимо малы и варьируются в пределах от 0,5 до 15 %, в основном зависят от точности используемых датчиков напряжения и тока.В зависимости от применения могут применяться делители напряжения с оптронами [73], токовые шунты с оптронами, трансформаторы напряжения и тока (погрешность < 0,1%), а также датчики Холла [92] (погрешность < 0,5%).
Когда сигналы напряжения и тока получаются от устройств Холла [92], потери в меди будут включать потери постоянного тока, если они существуют. При условии, что сигналы напряжения и тока генерируются датчиками PT и CT, потери постоянного тока не включаются в потери в меди и должны измеряться дополнительными вольтметрами постоянного тока и амперметрами или датчиками.В этом случае общие потери состоят из потерь в железном сердечнике, потерь переменного и постоянного тока в меди.
Медь или алюминий? Какой из них использовать и когда?
Помимо электропроводности, другие технологически важные свойства меди и алюминия настолько сильно различаются (очевидным примером является плотность), что области их применения были и всегда были четко различимы. И мало что изменилось или, вероятно, изменится в этом отношении.
Единственной действительно новой разработкой за последние годы стало внедрение корпусов роторов из литой меди .
Существуют медные шины, алюминиевые шины… и медные шины из алюминияНа самом деле существует только три, а теперь четыре области электротехники, в которых алюминий и медь конкурируют в одних и тех же сегментах рынка:
Практическое использование меди и алюминия в сектор электротехники – области, в которых могут использоваться оба металла, встречаются редкоКабели низкого и среднего напряжения
Кабели среднего напряженияРешение здесь состоит в том, что является меньшим из двух зол: большее сечение кабеля или больший вес кабеля ? Вообще говоря, алюминиевый кабель будет существенно дешевле. Тем не менее, все же стоит помнить, что медный кабель более пластичен и менее подвержен проблемам с электрическим контактом и, таким образом, обеспечивает больший запас прочности, чем соответствующий алюминиевый кабель. Из-за меньшего поперечного сечения медный кабель также будет легче прокладывать, так как жесткость кабеля зависит от квадрата площади поперечного сечения и, следовательно, от диаметра в четвертой степени!
Также можно приобрести очень маленький многожильный медный кабель; многожильный алюминиевый кабель доступен только с номинальной площадью поперечного сечения не менее 10 мм2, а отдельные жилы все еще очень толстые по сравнению с медными кабелями такого же сечения.По техническим причинам так называемые «тонкопроволочные» и «сверхтонкопроволочные» проводники доступны только из меди.
В результате самые тонкие доступные алюминиевые проводники значительно жестче, чем самые тонкие медные проводники, и эта разница иногда приводила к некоторым довольно дорогостоящим неожиданностям. На бумаге алюминиевый провод может быть дешевле, но это не учитывает дополнительные затраты и усилия, связанные с установкой менее гибких алюминиевых кабелей.
Подземный кабель, используемый на электростанции Dietlikon в Швейцарии – компромиссное решение, сочетающее в себе технологические свойства меди и цену алюминияВ последнее время в качестве компромиссного решения появился комбинированный кабель Cu-Al, который используется на электростанции Dietlikon электроэнергетическая компания в Швейцарии в качестве подземного кабеля в распределительных сетях низкого напряжения.
Представитель швейцарского завода Dietlikon выступил с презентацией о продукте и концепции, лежащей в его основе, после того, как был приглашен на заседания комитета DKE 712 «Безопасность установок информационных технологий, включая эквипотенциальное соединение и заземление» (DKE: Немецкая комиссия по электротехнике, электронике). и информационные технологии).
Предприятие электроснабжения Dietlikon является первым известным оператором распределительной сети, который систематически переводит свою распределительную сеть на пятипроводную систему TN-S – работы, которые она, конечно же, выполняет только во время ремонта, расширения сети и новых установок.
В этом новом кабеле фазные жилы имеют такое же поперечное сечение, как и нейтральный проводник, что помогает достичь симметричной структуры кабеля. Фазные проводники изготовлены из алюминия, а нейтральный провод того же диаметра — из меди, что позволяет ему пропускать больший ток и, таким образом, делает кабель более подходящим для решения проблем гармонического загрязнения, которые так часто обсуждаются сегодня.
Проводник защитного заземления в этом случае сконфигурирован как окружающий экран из медной проволоки, что обеспечивает гораздо более высокую симметрию и ЭМС, чем обычный пятый проводник.
Трансформаторы
Превосходные соединения меди обеспечивают высокую надежностьПроблема пространства для обмотки не стоит так остро в трансформаторах, как в электродвигателях , поэтому использование алюминия можно, по крайней мере, принять во внимание. Фактически основной канал утечки, т.е.зазор между обмотками ВН и НН должен иметь определенный размер по следующим трем причинам: изоляция, ограничение тока короткого замыкания и охлаждение.
Однако трансформатор с алюминиевыми обмотками будет больше, если потери мощности и все другие важные эксплуатационные характеристики, такие как напряжение короткого замыкания, должны поддерживаться на том же уровне, что и у эквивалентного трансформатора с медными обмотками (в конце концов, это это то, что мы имеем в виду, когда говорим, что два трансформатора эквивалентны). Однако общий вес немного большего трансформатора с алюминиевыми обмотками будет несколько меньше.
Различия в производственных затратах в значительной степени компенсируют друг друга, и, по мнению ряда уважаемых компаний-производителей, выбор материала проводника в первую очередь является вопросом философии компании.
Шины
Двойные медные шиныВ этом приложении пространственные требования имеют еще меньшее значение в процессе принятия решений, но все же остаются важным фактором. Во-вторых, применение шин характеризуется большим количеством проводящего материала и небольшим количеством изоляционного материала на небольшом пространстве. Это подчеркивает разницу в ценах на материалы.
В-третьих, большое количество электрических соединений в этом небольшом объеме означает, что проблемы с подключением, связанные с алюминием, более выражены в таких приложениях. Когда все эти аспекты принимаются во внимание, мы оказываемся в безвыходном положении, и вопрос о том, какой материал выбрать, становится почти философским. Однако важно убедиться, что цены и затраты не перепутаны. Если главным критерием выбора является цена, предпочтение обычно отдается алюминию.Но если принять во внимание все затраты (включая эксплуатационные расходы), обычно оказывается, что алюминий может кое-чему поучиться у меди.
Медь также имеет лучший внешний вид, потому что некоторые доступные алюминиевые шины имеют медное покрытие – не для улучшения электрического контакта (поскольку сверление, штамповка и завинчивание в любом случае повредят медное покрытие), а просто из эстетических соображений.
Одной из новых областей применения являются медные клетки ротора: в этом применении решающим фактором является более высокая электропроводность на единицу объема меди. Уже один этот фактор сделал целесообразным решение всех технических проблем, связанных с разработкой этих устройств. Для получения дополнительной информации читатель может обратиться к описаниям, доступным в других местах.
Бесспорным преимуществом алюминия являются воздушные высоковольтные кабели, где требования к пространству не имеют значения, но решающую роль играет вес. Меньшая прочность алюминия означает, что токопроводящие кабели должны быть усилены стальным сердечником, но это не меняет того факта, что кабели можно производить с меньшими затратами и что два материала можно легко отделить друг от друга с помощью магнита при сортировке. .
Покрытие и забота об окружающей среде
И алюминий, и медь окисляются при воздействии атмосферы. Оксиды, хлориды или сульфиды основного металла гораздо лучше проводят медь, чем алюминий. Для алюминиевого соединения с низким сопротивлением алюминиевые стержневые проводники должны быть покрыты, чтобы свести к минимуму окисление. Опасения по поводу окисления алюминия вдали от места соединения не представляют проблемы, и в большинстве сред оно защищает проводник от дальнейшей коррозии. Алюминиевые шинные проводники зависят от покрытия для целостности электрического соединения.
Алюминиевые и медные проводники обычно покрыты серебром или оловом. Как правило, болтовое соединение непокрытого алюминия с медными шинами не рекомендуется. Большинство соединений Al-Cu выполняется путем нанесения серебра или лужения на места соединения одного или обоих проводников.
Присутствие сероводорода (h3S) в атмосфере является основной проблемой для недрагоценных металлов Cu и серебрения. Оба подвержены сильной коррозии при относительно низкой концентрации h3S и наиболее интенсивно в местах, где обычно наблюдается повышенная температура, когда оборудование находится под напряжением.Одновременно активны два процесса: общая коррозия серебра и коррозия ползучести меди. Серебряное покрытие широко используется на контактах и других токопроводящих частях электрооборудования из-за его превосходной проводимости, стойкости к истиранию и долговечности.
Сероводород обычно присутствует на химических, нефтеперерабатывающих, сталелитейных, целлюлозно-бумажных комбинатах и на очистных сооружениях.
В среде h3S металлические нити (усы) начинают расти, как только образуется достаточно толстый слой сульфида серебра.Эта коррозия серебра приводит к высокому сопротивлению, выделяющему больше тепла, что еще больше стимулирует потускнение и рост усов. Если позволить этому процессу продолжаться, это приведет к отказу из-за перегрева или короткого замыкания.
Лужение обеспечивает хорошую защиту от окружающей среды и является практическим решением проблемы коррозии меди и посеребренной меди h3S
Артикул: Практическое применение электрических проводников, Стефан Фассбиндер
Оригинал GO95 — Приложение B — Таблица 18
Исходный GO95 — Приложение B — Таблица 18
Оригинал Общий заказ 95
Приложение
Б
Механические данные и данные по нагрузке для Проводники
Таблица 18 Медный провод — неизолированный — многожильный и одножильный — характеристики и Загрузка | ||||||||||||
Характеристики проводника | Нагрузка на погонный фут проводника, фунты | |||||||||||
Размер кабеля или провода, кл. Мил или AWG | Компонентные провода
(пряди) | Предел прочности при растяжении, фунты | ||||||||||
Вертикальная нагрузка, только проводник | Горизонтальная нагрузка, ветер 8 фунтов на кв. футов на
Проводник | Вертикальная нагрузка, проводник с 1/2 льда | Горизонтальная нагрузка, ветер 6 фунтов на кв. футов на проводнике
с 1/2 льда | |||||||||
* Минимальный предел прочности по спецификации ASTM, B
1 — 39.
** Для многожильных проводов предел прочности не менее 90 %.
спецификаций ASTM, B 2 — 39, плюс 1/4 разницы между максимальным
и 90% минимальных значений ASTM; для одножильных проводников минимальный предел прочности
спецификаций ASTM, B 2 39, плюс 1/4 разницы между минимальным
и максимум.
Допустимая токовая нагрузка медных проводников
Допустимая нагрузка по току определяется как сила тока, которую проводник может выдержать до расплавления проводника или изоляции.Нагрев, вызванный электрическим током, протекающим по проводнику, определяет величину тока, который будет выдерживать провод. Теоретически количество тока, которое может быть пропущено через один неизолированный медный проводник, может быть увеличено до тех пор, пока выделяемое тепло не достигнет температуры плавления меди. Есть много факторов, которые будут ограничивать величину тока, который может быть пропущен через провод.
Этими основными определяющими факторами являются:
Размер проводника:
Чем больше площадь круглого мила, тем больше текущая емкость.
Количество выделяемого тепла никогда не должно превышать максимально допустимую температуру изоляции.
Температура окружающей среды:
Чем выше температура окружающей среды, тем меньше тепла требуется для достижения максимальной температуры изоляции.
Номер проводника:
Тепловыделение уменьшается по мере увеличения количества индивидуально изолированных проводников, связанных вместе.
Условия установки:
Ограничение отвода тепла путем прокладки проводников в кабелепроводах, воздуховодах, лотках или желобах снижает допустимую нагрузку по току.Это ограничение также можно несколько уменьшить, используя соответствующие методы вентиляции, принудительное воздушное охлаждение и т. д.
Принимая во внимание все задействованные переменные, нельзя разработать простую диаграмму номинальных токов и использовать ее в качестве окончательного решения при проектировании системы, в которой номинальные значения силы тока могут стать критическими.
На диаграмме показан ток, необходимый для повышения температуры одиночного изолированного провода на открытом воздухе (окружающая среда 30°C) до пределов для различных типов изоляции. В следующей таблице указан коэффициент снижения номинальных характеристик, который следует использовать, когда проводники связаны в жгуты. Эти таблицы следует использовать только в качестве руководства при попытке установить номинальные токи на проводнике и кабеле.
Коэффициенты снижения номинальных характеристик для пучков проводов | |
---|---|
Комплект № | Коэффициент снижения номинальных характеристик (X ампер) |
2-5 | 0,8 |
6-15 | 0,7 |
16-30 | 0,5 |
Ампер
Изоляционные материалы: | Полиэтилен Неопрен Полиуретан Поливинилхлорид (полужесткий) | Полипропилен Полиэтилен (высокой плотности) | Поливинилхлорид ПВХ (облученный) Нейлон | Kynar (135°C) Полиэтилен (сшитый) Термопласт Эластомеры | Каптон ПТФЭ ФЭП ПФА Силикон |
---|---|---|---|---|---|
Медь Темп. | 80°С | 90°С | 105°С | 125°С | 200°С |
30 AWG | 2 | 3 | 3 | 3 | 4 |
28AWG | 3 | Insulation Materials: Polypropylene, Polyethylene (High Density)»> 4 | 4 | 5 | 6 |
26 AWG | 4 | 5 | 5 | 6 | Insulation Materials: Kapton, PTFE, FEP, PFA, Silicone»> 7 |
24 AWG | 6 | 7 | 7 | 8 | 10 |
22AWG | 8 | 9 | Insulation Materials: Polyvinylchloride, PVC (Irradiated), Nylon»> 10 | 11 | 13 |
20 AWG | 10 | 12 | 13 | 14 | 17 |
18 AWG | Insulation Materials: Polyethylene, Neoprene, Polyurethane, Polyvinylchloride (Semi-Rigid)»> 15 | 17 | 18 | 20 | 24 |
16 AWG | 19 | 22 | 24 | 26 | Insulation Materials: Kapton, PTFE, FEP, PFA, Silicone»> 32 |
14 AWG | 27 | 30 | 33 | 40 | 45 |
12 AWG | 36 | 40 | Insulation Materials: Polyvinylchloride, PVC (Irradiated), Nylon»> 45 | 50 | 55 |
10 AWG | 47 | 55 | 58 | 70 | 75 |
8 AWG | Insulation Materials: Polyethylene, Neoprene, Polyurethane, Polyvinylchloride (Semi-Rigid)»> 65 | 70 | 75 | 90 | 100 |
6 AWG | 95 | 100 | 105 | 125 | Insulation Materials: Kapton, PTFE, FEP, PFA, Silicone»> 135 |
4 AWG | 125 | 135 | 145 | 170 | 180 |
2 AWG | 170 | 180 |